半监督学习
CV-deeplearning
小米AI Lab图像算法工程师,擅长表格识别、目标检测、行人属性识别、车牌识别等。
展开
-
半监督学习实战——标注数据和伪标签数据混合训练
当标注数据较少,而未标注的数据很多,并且标注成本很高时,可以考虑半监督学习训练。首先,采用伪标签技术把没有标注的的图片打上伪标签,然后用标注数据和伪标签数据混合训练模型。值得注意的是,要保证每个mini-batch中含有真实标签和伪标签,本文带你用代码实现。原创 2020-08-13 15:59:22 · 8326 阅读 · 2 评论 -
半监督学习——FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence
当标注标签不足或者标注成本很高时,可以考虑用半监督学习的方法。半监督学习使用部分标注的图片和较多未标注的图片进行训练,达到较好的效果 。本文是谷歌团队的作品,以分类为例介绍半监督学习。原创 2020-08-07 18:14:47 · 1510 阅读 · 5 评论