首先,一个函数的定义域一定是自变量的取值范围
一个函数如何定位自变量:
一个函数的函数值一定是从本质出发的某个变量的值的变化而变化的,这个变量就是自变量!
为什么f[(g(x)]中的g(x)不是自变量?
我们假设g(x)=3x+5
很明显,决定g(x)值变化的不是3x+5这个整体,而是除去常量后剩下的x,因此,从本质看不是因为g(x)值的变化引起f[g(x)]的变化,而是x的变化引起g(x)的变化,进一步带动f[g(x)]的变化。
f(x)–>f[g(x)],就是将x替换为g(x)
因此,可以认为 替换前的x 等同 替换后的g(x),
那么,替换前x的范围 等同 替换后g(x)的范围,
最后,根据g(x)的范围 得出 g(x)中的x范围 即为f[g(x)]的定义域
f[g(x)]–>f(x),就是将g(x)替换为x
因此,可以认为 替换前的g(x) 等同 替换后的x,
那么,替换前g(x)的范围 等同 替换后x的范围,
已知f[g(x)]的定义域,即x的范围,可得g(x)的范围,
最后,根据f([g(x)]中g(x)的范围 得出 f(x)中x范围 即为f(x)的定义域
f[g(x)]–>f[h(x)],就是将g(x)替换为h(x)
因此,可以认为 替换前的g(x) 等同 替换后的h(x),
那么,替换前g(x)的范围 等同 替换后h(x)的范围,
已知f[g(x)]的定义域,即x的范围,可得g(x)的范围,
可根据f([g(x)]中g(x)的范围 得出 f[h(x)]中h(x)范围
最后,根据f[h(x)]中h(x)范围 得出x范围 即为f(x)的定义域
只有每个函数都有意义(即自变量范围都符合要求),函数整体才能够有意义,因此取交集