角平分线上的点到角两边的距离相等易混淆点

本文探讨了角平分线上的点到角两边距离相等的定理,澄清了一个常见误区:误认为若两点到角平分线上的点距离相等,则连线与角两边垂直。通过实例说明只有特定条件下,点的连线才可能垂直于角的两边,并提醒学生在几何证明中避免直接将角平分线和相等距离与垂直关系混淆。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

角平分线上的点到角两边的距离

在这里插入图片描述
如上图所示,看图理解!
角平分线上的点到角两边的距离相等定理意思:
若在∠BAC的角平分线AD上取点P,分别作AB、AC的垂线交于P1、P2两点,则两垂线段相等:
P P 1 = P P 2 PP_{1} = PP_{2} PP1=PP2

假设有一个ABC,其中A、B、C为三个。现在我们需要在平分线上找到一个D,使得D到线段AB和AC的距离分别为L1和L2。 首先,我们需要计算出ABC的一半的度phi。可以使用以下公式计算: phi = atan2(y3 - y1, x3 - x1) - atan2(y2 - y1, x2 - x1) 其中(x1, y1)、(x2, y2)、(x3, y3)分别为A、B、C的坐标。 接下来,我们需要计算出平分线的向量V。可以使用以下公式计算: V = (x3 - x1, y3 - y1) 我们需要将向量V归一化,使其长度为1。可以使用以下公式计算: U = V / sqrt(V.x * V.x + V.y * V.y) 接下来,我们需要计算出平分线的交P。可以使用以下公式计算: P = A + t * U 其中A为A的坐标,t为实数。 接下来,我们需要计算出向量U的垂直向量W。可以使用以下公式计算: W = (-U.y, U.x) 接下来,我们可以使用以下公式计算出D的坐标: D = P + W * L1 / sqrt(W.x * W.x + W.y * W.y) 其中*代表乘,/代表除法,^代表平方。 但是,这个D可能不在线段AC上,而是在延长线AC上。我们需要判断D是否在线段AC上,如果不在,则需要反转线段AB和AC的顺序,并重新计算一次D的坐标。 具体地,我们需要计算出向量AD和DC,然后计算它们的积。如果积小于0,则说明D在延长线AC上。此时,我们需要交换B和C,重新计算D的坐标。可以使用以下代码实现: ``` AD = D - A DC = C - D if dot(AD, DC) < 0: temp = B B = C C = temp L1, L2 = L2, L1 D = P + W * L1 / sqrt(W.x * W.x + W.y * W.y) ``` 最后,我们就可以得到D的坐标了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值