角平分线上的点到角两边的距离相等易混淆点

本文探讨了角平分线上的点到角两边距离相等的定理,澄清了一个常见误区:误认为若两点到角平分线上的点距离相等,则连线与角两边垂直。通过实例说明只有特定条件下,点的连线才可能垂直于角的两边,并提醒学生在几何证明中避免直接将角平分线和相等距离与垂直关系混淆。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

角平分线上的点到角两边的距离

在这里插入图片描述
如上图所示,看图理解!
角平分线上的点到角两边的距离相等定理意思:
若在∠BAC的角平分线AD上取点P,分别作AB、AC的垂线交于P1、P2两点,则两垂线段相等:
P P 1 = P P 2 PP_{1} = PP_{2} PP1=PP2

但是,很多同学会进入一个误区:若在角两边存在两个点Q1、Q2分别到角平分线上的某点P的距离相等,则该角平分线上的点与角两边上两点的连线分别垂直于角两边(即PQ1⟂AB、PQ2⟂AC)。
从上图很明显能看出,并不是垂直关系,只是因为我们找的两点Q1、Q2,
满足了:
P 1 Q 1 = P 2 Q 2 = m P_{1}Q_{1}=P_{2}Q_{2}=m P1Q1=P2Q2=m
从而有:
△ P P 1 Q 1 ≅ △ P P 2 Q 2 \triangle PP_{1}Q_{1}\cong \triangle PP_{2}Q_{2} PP1Q1PP2Q2
因此:
P Q 1 = P Q 2 PQ_{1}=PQ_{2} PQ1=PQ2
但没有PQ1⟂AB、PQ2⟂AC这一垂直关系

要告诉同学们的一点:在做几何证明题时不要一看到角平分线和两边相等,就直接得出垂直关系!这是一个严重误区要重视

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值