P1037 产生数 (floyd+高精)

题目描述
给出一个整数 n(n<10^30)和 k 个变换规则(k≤15)。

规则:

一位数可变换成另一个一位数。
规则的右部不能为零。
例如:n=234。有规则(k=2):

2->5
3->6
上面的整数 234 经过变换后可能产生出的整数为(包括原数):

234
534
264
564
共 4 种不同的产生数。

现在给出一个整数 n 和 k 个规则。求出经过任意次的变换(0次或多次),能产生出多少个不同整数。

仅要求输出个数。

输入格式
第一行两个整数 n,k。

接下来 kk 行,每行两个整数 xi,yi。

输出格式
输出能生成的数字个数。

输入输出样例``

每种变换之间相互独立。

#include <iostream>
#include <string>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
#include <queue>
#include <climits>
#include <map>
#include <cmath>
using namespace std;
int f[10][10], cnt[10], res[105];
int main()
{
  string s;
  int k;
  int a, b;
  cin >> s >> k;
  for (int i = 0; i < k; i++)
  {
    cin >> a >> b;
    f[a][b] = 1;
  }
  for (int i = 0; i < 10; i++)
  {
    f[i][i] = 1;
  }
  for (int k = 0; k < 10; k++)
  {
    for (int i = 0; i < 10; i++)
    {
      for (int j = 0; j < 10; j++)
      {
        f[i][j] = f[i][j] | (f[i][k] && f[k][j]);
      }
    }
  }
  for (int i = 0; i < 10; i++)
  {
    for (int j = 0; j < 10; j++)
    {
      if (f[i][j])
      {
        cnt[i]++;
      }
    }
  }
  int len = 2;
  res[1] = 1;
  for (int i = 0; i < s.size(); i++)
  {
    for (int j = 1; j <= 100; j++)
    {
      res[j] *= cnt[s[i] - '0'];
    }
    for (int j = 1; j <= 100; j++)
    {
      if (res[j] >= 10)
      {
        res[j + 1] += res[j] / 10;
        res[j] %= 10;
      }
    }
    while (res[len])
      len++;
  }
  for (int i = len - 1; i > 0; i--)
  {
    cout << res[i];
  }

  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值