计算机视觉在目标检测领域取得了显著的进展。YOLO(You Only Look Once)作为一种快速且准确的目标检测算法,一直备受关注。在这篇文章中,我们将介绍YOLOv7的改进系列,这个全新的架构在私有数据集上表现出色,并且其精度超越了TPH-YOLOv5。我们还提供了相应的源代码供读者参考。
在目标检测任务中,使用私有数据集进行训练对于实际应用非常重要。因为私有数据集通常包含特定领域的目标,例如自动驾驶中的交通标志、行人、车辆等。因此,我们针对私有数据集进行了改进,以提高YOLOv7在这些特定场景下的性能。
首先,我们对YOLOv7的网络架构进行了优化。我们采用了一种全新的架构,它利用了更深的网络层级以及更多的特征图,从而提高了目标检测的准确性。这个新架构在私有数据集上进行了精心调整,以达到最佳性能。下面是我们对YOLOv7架构进行的改进的源代码示例:
# YOLOv7 Improved Architecture
def yolov7_improved()