R语言机器学习算法实战系列(五)GBM算法分类器+SHAP值 (Gradient Boosting Machines)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

Gradient Boosting Machines(GBM)是一种集成学习算法,它通过构建多个弱预测模型(通常是决策树),然后将这些模型的预测结果组合起来,以提高预测的准确性。GBM的核心思想是逐步添加模型,每个新模型都尝试纠正前一个模型的错误。

算法原理:

  1. 初始化模型: 首先,GBM从一个初始模型开始,这个模型可以是一个简单的模型,比如一个常数值(回归问题)或一个简单的分类器(分类问题)。
  2. 负梯度方向: 对于每个训练样本,计算当前模型的预测值与真实值之间的残差(或误差)。在回归问题中,这通常是真实值与预测值之间的差;在分类问题中,这可能是梯度(在某些实现中,如AdaBoost&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值