禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
介绍
解释模型
SHAP(SHapley Additive exPlanations)是一种基于博弈论的机器学习解释方法,它旨在为模型的预测结果提供一种模型无关的解释。SHAP方法的核心是Shapley值,这是一种在合作博弈中分配利益的公平方式。Shapley值具有以下性质:
- 有效性:所有参与者的分配总和等于团队总收益。
- 对称性:如果两个参与者的贡献相同,他们应该获得相同的分配。
- 反事实:如果一个参与者对团队总收益没有影响,他的分配应该是0。
- 可加性:分配的总和应该等于分步分配的总和。
SHAP方法将数据集中的每个特征视为一个"玩家",模型的预测结果看作是所有玩家合作的结果。每个特征的SHAP值表示该特征对预测结果的边际贡献。SHAP值的计算过程可以为每个特征在每个样本中的预测值提供一种解释,从而帮助我们理解模型的决策过程。