R语言机器学习论文(五):解释模型

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!
在这里插入图片描述

介绍

解释模型

SHAP(SHapley Additive exPlanations)是一种基于博弈论的机器学习解释方法,它旨在为模型的预测结果提供一种模型无关的解释。SHAP方法的核心是Shapley值,这是一种在合作博弈中分配利益的公平方式。Shapley值具有以下性质:

  • 有效性:所有参与者的分配总和等于团队总收益。
  • 对称性:如果两个参与者的贡献相同,他们应该获得相同的分配。
  • 反事实:如果一个参与者对团队总收益没有影响,他的分配应该是0。
  • 可加性:分配的总和应该等于分步分配的总和。

SHAP方法将数据集中的每个特征视为一个"玩家",模型的预测结果看作是所有玩家合作的结果。每个特征的SHAP值表示该特征对预测结果的边际贡献。SHAP值的计算过程可以为每个特征在每个样本中的预测值提供一种解释,从而帮助我们理解模型的决策过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值