R语言机器学习算法实战系列(十八)特征选择之LASSO算法(Least Absolute Shrinkage and Selection Operator Regression)

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

特征选择(Feature Selection)是机器学习中的一个重要步骤,它涉及到从原始特征集中选择最相关、最有信息量的特征子集,以用于模型训练和预测。这个过程的目的是提高模型的性能、减少计算成本、增强模型的可解释性,并可能提高模型的泛化能力。以下是特征选择的几个关键点:

  1. 定义:特征选择是从原始特征集中选择一个子集的过程,这个子集被认为是对模型预测最有用的。
  2. 必要性
    • 数据简化:减少特征数量可以简化模型,使其更容易理解和解释。
    • 性能提升:去除不相关或冗余的特征可以减少模型的过拟合风险,提高模型的泛化能力。
    • 计算效率:减少特征数量可以减少模型训练和预测的时间和计算资源消耗。
  3. 方法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值