R语言机器学习算法实战系列(二十一)处理数据不平衡的四种方法

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!

在这里插入图片描述

介绍

数据不平衡(Class Imbalance)是指在分类问题中,不同类别的样本数量存在显著差异的现象。例如,在一个二分类问题中,正类样本数量远多于负类样本,或者反之。这种不平衡现象在许多实际应用场景中非常常见,如医疗诊断(疾病患者与健康人群的比例)、金融欺诈检测(欺诈交易与正常交易的比例)等。

数据不平衡对模型性能的影响

在应用机器学习算法构建分类器时,数据不平衡会对模型的性能产生较大影响,主要原因如下:

  • 模型偏向多数类:数据不平衡时,多数类样本数量远多于少数类样本。大多数机器学习算法在训练过程中会假设数据是均匀分布的,因此模型会倾向于预测多数类,以获得更高的整体准确率。例如,在一个二分类问题中,如果多数类占 90%,即使模型将所有样本都预测为多数类,其准确率也

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信学习者1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值