文本生成----GAN

本文介绍了GAN的基本原理,包括训练过程和目标函数。讨论了Wasserstein GAN(W-GAN)如何解决梯度消失问题,并引入了Wasserstein GAN with Gradient Penalty(WGAN-GP)来强制执行Lipschitz约束。此外,还提到了TEXTGAN,它结合了WGAN-GP和特征匹配策略来优化文本生成任务。
摘要由CSDN通过智能技术生成

普通GAN简介:

       总之, 对于 GAN 的学习过程, 我们需要训练模型 D 来最大化判别数据来源于真实数据或者伪数据分布 G(z) 的准确率, 同时, 我们需要训练模型 G来最小化 log(1 − D(G(z))). 这里可以采用交替优化的方法: 先固定生成器 G, 优化判别器 D, 使得D 的判别准确率最大化; 然后固定判别器 D, 优化生成器 G, 使得 D 的判别准确率最小化. 当且仅当p(data)= p(g)时达到全局最优解. 训练 GAN 时, 同一轮参数更新中, 一般对 D 的参数更新 k 次再对 G的参数更新 1 次.

       目标函数如下:

        


WGAN:

       GAN 在基于梯度下降训练时存在梯度消失的问题, 因为当真实样本和生成样本之间具有极小重叠甚至没有重叠时, 其目标函数的 Jensen-Shannon散度是一个常数, 导致优化目标不连续. 为了解决训练梯度消失问题, Arjovsky 等[29]提出了 Wasser-stein GAN (W-GAN). W-GAN 用 Earth-Mover 代替 Jensen-Shannon 散度来度量真实样本和生成样本分布之间的距离, 用一个批评函数 f 来对应 GAN的判别器, 而且批评函数 f 需要建立在 Lipschitz 连续性假设上. 另外, GAN 的判别器 D 具有无限的建模能力, 无论真实样本和生成的样本有多复杂, 判别器 D 都能把它们区分开, 这容易导致过拟合问题. 为了限制模型的建模能力, Qi[30]提出

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值