指数分布

先理解指数分布

1.Exponential Distribution 指数分布

描述了事件的时间间隔的概率

its probability density function is given by

1.1 CDF, Mean, Variance

CDF

Mean

Variance

1.2 指数分布的特性:

1.2.1 memory-less property 无记忆性

这里看一些例子

Solution:

The propability function and CDF can be given by:

再考虑一道有意思的邮局题:

solution

 

这里分两步思考,第一步是Mr.Jones 或者Mr.Brown先离开,这里没有区别,Mr.Smith开始被服务,由于无记忆性,此刻剩下的两人都服从同样的指数分布,所以每个人先离开的概率是0.5

也就是说,史密斯先生最后离开的概率是0.5

1.2.2 several further properties

1.2.2.1 Comparison of two exponentials

================================================================================

The prppability

=================================================================================

1.2.2.2 The distribution of sum

下面是两点知识预备:

================================================================================

================================================================================

证明如下:

 

1.2.2.3 The distribution of minimum

 

利用这几个特性,完成以下例题:

Solution:

总的时间分为两部分,一部分是等待时间,一部分是服务时间

 

转载于:https://www.cnblogs.com/Mr-ZeroW/p/7688436.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值