算法导论学习笔记——15 动态规划

15 动态规划

在这里插入图片描述在这里插入图片描述
动态规划的本质就是状态的转移,
新状态=原状态+改变状态的收益,
保存每种状态的值,用空间换时间,
节省递归解决重复子问题的时间。

动态规划两种实现方法:
1.带备忘的自顶向下法
仍用递归解决问题,但每一步保存当前状态的值
下次直接调用这个值,与记忆化dfs的想法类似。
2.自底向上法
当子问题的求解只依赖于某个更小的子问题时,
可以按规模从小到大求解。

经典动态规划问题
1.背包问题

(1)01背包
a.
研究的问题:有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

b.
基本思路
这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

c.
f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
状态转移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

d.
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物 品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

e.
优化空间复杂度
以上方法的时间和空间复杂度均为O(VN),其中时间复杂度应该已经不能再优化了,但空间复杂度却可以优化到O。

先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1…N,每次算出来二维数组f[i][0…V]的所有值。那么,如果只用一个数组 f[0…V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1] [v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1] [v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V…0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态 f[i-1][v-c[i]]的值。伪代码如下:

for i=1..N
    for v=V..0
        f[v]=max{f[v],f[v-c[i]]+w[i]};

初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。

如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1…V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。

如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0…V]全部设为0。

初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么 任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。

(2)完全背包
题目
有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

转化为01背包问题求解
考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。这样完全没有改进基本 思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:将一种物品拆成多件物品。

优化1:
若两件物品i、j满足c[i]<=c[j]且w[i]& gt;=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于 随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。

这个优化可以简单的O(N^2)地实现,一般都可以承受。另外,针对背包问题而言,比较不错的一种方法是:首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。

优化2
把第i种物品拆成费用为c[i]*2^ k、价值为w[i]*2^ k的若干件物品,其中k满足c[i]*2^ k<=V。这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。这样把每种物品拆成O(log V/c[i])件物品,是一个很大的改进。

最优做法
时间复杂度O(VN)
使用一维数组:

for i=1..N
    for v=0..V
        f[v]=max{f[v],f[v-cost]+weight}

这个伪代码与P01的伪代码只有v的循环次序不同而已。 为什么这样一改就可行呢?首先想想为什么P01中要按照v=V…0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1] [v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的 子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0…V的顺序循环。这就是这个简单的程序为何成立的道理。

值得一提的是,上面的伪代码中两层for循环的次序可以颠倒。这个结论有可能会带来算法时间常数上的优化。

这个算法也可以以另外的思路得出。例如,将基本思路中求解f[i][v-c[i]]的状态转移方程显式地写出来,代入原方程中,会发现该方程可以等价地变形成这种形式:

f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}

将这个方程用一维数组实现,便得到了上面的伪代码。

最后抽象出处理一件完全背包类物品的过程伪代码:

procedure CompletePack(cost,weight)
    for v=cost..V
        f[v]=max{f[v],f[v-c[i]]+w[i]}

三种背包全代码整理

//01背包
void ZeroOnePack(int c, int w)
{
    for (int v = V; v >= c; v--)
    {
        dp[v] = Max(dp[v], dp[v-c] + w);
    }
}

//完全背包
void CompletePack(int c, int w)
{
    for (int v = c; v <= V; v++)
    {
        f[v] = Max(dp[v],dp[v-c] + w);
    }
}

//多重背包,二进制。
void MultiplePack(int c, int w, int n1)
{
    if (c * n1 >= V)
    {
        CompletePack(c, w); 
    }
    else
    {
        int k = 1;
        while (k < n1)
        {
            ZeroOnePack(k*c, k*w);
            n1 -= k;
            k <<= 1;
        }
        ZeroOnePack(n1*c, n1*w);
    }
}
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int t, case1 = 0;
    scanf("%d", &t);
    int n, m;//n:物品种数
    int i, j;

    //scanf("%d%d", &n, &m);
    while (t--)
    {
        scanf("%d%d", &V, &n);
        for (i = 1; i <= n; i++)
        {
            scanf("%d%d%d", &c[i], &w[i], &n1[i]);

        }

        memset(f, 0, sizeof(f));

        for (i = 1; i <= n; i++)
        {
            MultiplePack(c[i], w[i], n1[i]); 
        }

        printf("%d\n", dp[V]);

    }

    return 0;
}

(2)最长公共子序列
LCS问题
状态转移方程:

if(s[i+1]=t[j+1]) dp[i+1][j+1]=max(dp[i][j]+1,dp[i][j+1],dp[i+1][j]);
else dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j])

时间复杂度O(n*m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值