混淆矩阵中可计算的比率非常多,现对其内涵做一个生活化的说明。
一、首先是上图中,横轴为实际情况,纵轴为预测情况。TN是True Negative,FN是False Negative,FP是 False Positive, TP是True Positive。
所以我们可以确定的是,上述四个词,第二个字母P/N指的是你的判断是P(positivie)还是N(negative),而第一个词,是形容你的判断是不是准的。
例如FN,指的是你觉得他是negative,而你判断错了,所以它事实上是什么呢?肯定是你的判断的相反面,即FN在事实上是一种Positive.
二、进一步解释
混淆矩阵是用于评估分类器的性能,分类器是什么呢?例如,你去判断一个陌生人的好坏(注意,这里我们的目的是抓出坏人,即坏人是正样本,所谓的阳性),那么你就是一个分类器。那么以上的TP,FP,TN,FN代表的是什么涵义呢?
1)TP指的是,你判断这个人是坏人,而他也确实是坏人的情况。你不仅判断的对,而且你判断的重心也与我们的目标相符,这是典型的nice的判断。
2)FN指的是,你判断这个是好人,而他却是坏人的情况,是一种误判,在统计学中称为错误类型二;在这个错误中,你放过了我们的目标,所以是一种遗漏