混淆矩阵的思考

混淆矩阵是评估分类器性能的重要工具,本文通过生活化的解释阐述了TP、FP、TN、FN的含义。文章指出,Recall(召回率)衡量找到目标样本的能力,而Precision关注正确识别的比例。特异性(Specificity)则表示正确识别非目标样本的能力。Accuracy(准确率)在某些情况下可能不是最佳评估指标。
摘要由CSDN通过智能技术生成

混淆矩阵中可计算的比率非常多,现对其内涵做一个生活化的说明。


一、首先是上图中,横轴为实际情况,纵轴为预测情况。TN是True Negative,FN是False Negative,FP是 False Positive, TP是True Positive。

所以我们可以确定的是,上述四个词,第二个字母P/N指的是你的判断是P(positivie)还是N(negative),而第一个词,是形容你的判断是不是准的。

例如FN,指的是你觉得他是negative,而你判断错了,所以它事实上是什么呢?肯定是你的判断的相反面,即FN在事实上是一种Positive.


二、进一步解释

混淆矩阵是用于评估分类器的性能,分类器是什么呢?例如,你去判断一个陌生人的好坏(注意,这里我们的目的是抓出坏人,即坏人是正样本,所谓的阳性),那么你就是一个分类器。那么以上的TP,FP,TN,FN代表的是什么涵义呢?

1)TP指的是,你判断这个人是坏人,而他也确实是坏人的情况。你不仅判断的对,而且你判断的重心也与我们的目标相符,这是典型的nice的判断。

2)FN指的是,你判断这个是好人,而他却是坏人的情况,是一种误判,在统计学中称为错误类型二;在这个错误中,你放过了我们的目标,所以是一种遗漏࿰

好的,你的问题是如何利用条件一、二和三编写故障诊断技术Matlab代码。以下是一个简单的步骤: 1. 下载并导入西储大学数据集。这个数据集包含了机器运行过程中的传感器测量值,以及相应的故障标签。 2. 利用Matlab中的深度学习工具箱,设计和训练一个栈式稀疏自编码器。这个自编码器的目的是对数据进行特征提取和降维,以便后续的故障诊断任务。 3. 利用训练好的自编码器,对数据集中的所有样本进行编码。得到的编码向量可以看作是每个样本的特征表示。 4. 将编码向量和故障标签,分成训练集和测试集。使用训练集来训练一个支持向量机(SVM)分类器,用来进行故障分类任务。 5. 在测试集上进行分类,得到混淆矩阵混淆矩阵可以反映分类器的性能,包括正确率、召回率和F1值等。 在这个过程中,需要注意以下几点: 1. 数据预处理:对数据进行预处理是非常重要的。这包括对数据进行归一化、去噪、平衡化等处理,以便更好地训练自编码器和SVM分类器。 2. 自编码器的设计:自编码器可以有不同的设计,例如多层自编码器、卷积自编码器等。需要根据实际情况选择最合适的设计。 3. SVM参数的调整:SVM有很多参数需要调整,包括核函数、正则化系数等。需要根据实际情况进行调整,以获得最佳的分类效果。 总之,这个过程需要一定的实践经验和专业知识,需要认真思考和尝试。希望这些信息能对你有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HDuBois

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值