用通俗的语言解释贝叶斯公式

传统的机器学习离不开贝叶斯,网上讲的都不够通俗。我就来用白话阐释一下。

先上公式:

                        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

这个公式讲了一个什么故事呢?

指的是,当新的信息出现的时候,原来的事件的概率发生了变化。

举个通俗的例子,当我拿一个手表放到你面前,让你猜这个手表是不是奢侈品手表时,你此时还没看这个手表,但是你认为按常理估计,这个手表大概率就是个普通的石英表。

突然,你观察到,这个手表上写了一个VACHERON,你转念一想,万一它要是僵尸牌手表,那我不就估计错了吗?此时,你的心态发生了变化,决定把你对这个手表判断是奢侈品的概率提升到了80%。

现在我们来分析一下你的具体心理变化过程:

1)你首先想到的是,假设它真的是僵尸牌手表,那么它刻上VACHERON的概率是百分之百;

2)然后你又想到的是,一般的手表哪有敢刻VACHERON字样的呢?这更加验证了这个手表不一般。

3)经过上面两条推断,你慌了,觉得这个手表真的可能是僵尸牌手表。于是,你现在大大地认为这块表很可能值你的一个房子钱。

现在我们来回到贝叶斯公式。

首先,P(A)讲的是先验概率,指的是,一开始你认为这个手表是奢侈品的概率非常低。P(A|B)就是当你看到这个手表有VACHERON字样以后(也就是此时B信息发生了),你觉得它是奢侈品的概率一下就增加了好多。

其次,调整因子,它的作用是对P(A)进行改变,让它变动成为新的概率,这个新的概率就是后验概率P(A|B)。可以看到公式里,就是P(A)经过乘以这个调整因子以后,变成了P(A|B)。

再次,调整因子怎么解释呢?调整因子是一个分数,分母和分子就是上面我讲的故事里那儿的1)和2)。分母就是第一条,分子就是第二条。具体来讲的话就是:

a),你考虑到万一它真的是僵尸牌手表*,那么它刻上VACHERON字样的概率就是极高的,比如100%,此时分子P(B|A)成了一个很大的数(当然作为概率它最大就是100%)。

b),你考虑到,在所有手表当中,没有啥手表会闲着没事刻VACHERON这一串字母,所以分母P(B)就变成了一个极小的数,比如趋近1%。

当你考虑以上两条的时候,你发现,用100%除以1%的时候,这个调整因子变的非常大。此时,你心里对这块表是奢侈品手表的概率从0.08%(这是一个随口说的数字)变成了80%。

以上就是杰出的牧师兼统计学家贝叶斯发现的公式,以及你心里的变化过程。


再讲几点,把上面的故事再补充一下。

1)*“万一它真的是僵尸手表”,这里就是指的是P(B|A)这个条件概率。条件概率就是A发生的情况下B的可能性,也就是你心里假设的“万一”。

2)我们始终的着眼点都在A上面,一开始心里估计的是P(A),后面得到的结论也是P(A|B),只不过P(A|B)是新的信息B发生了以后的A。

3)调整因子说白了就是B对A的带动效应,这种带动效应考虑了两方面,一方面就是平常情况下B发生的概率(可能很低),另一方面就是A发生的情况下B的概率P(B|A),万一这两个真有必然性,那么P(B|A)肯定是很高的。

4)P(B|A)算是P(B)的一种特殊情况。事实上,P(B) = P(B|A) * P(A) + P(B|非A)* P(非A)。也就是你正常算P(B)的时候也要考虑一下P(B|A)这种情况。用上面的例子讲,就是你在估计手表0.08%的概率是奢侈品的时候,0.08%中间是考虑了奢侈品和非奢侈品两种情况的,只不过由于P(非A)概率更大,所以被稀释下来了。

### 回答1: 白话机器学习的数学pdf是一本以易懂的语言讲解机器学习中涉及的数学概念和算法的PDF教材。 在机器学习中,数学是一门非常重要的学科。它涵盖了许多基本的数学概念,如线性代数、微积分和概率论。这些数学概念在理解和应用各种机器学习算法时至关重要。 这本PDF教材以白话的方式解释了这些数学概念,使读者能够轻松理解和学习。它通过易懂的例子和图示来说明每个概念的含义和应用,帮助读者建立直观的认识。 PDF教材的内容包括线性代数的基本概念,如向量、矩阵和线性方程组,并解释了这些概念在机器学习中的应用,如特征向量和数据降维。 此外,PDF教材还讲解了微积分的概念和应用,如最优化问题和梯度下降算法。这些是机器学习中常用的算法,通过学习微积分,读者可以深入理解这些算法的原理和实现方式。 概率论也是机器学习中不可或缺的一部分,PDF教材简明扼要地介绍了概率的基本概念和常见的概率分布。它还解释贝叶斯推断和朴素贝叶斯分类器在机器学习中的应用。 总的来说,这本白话机器学习的数学pdf以简单易懂的方式解释机器学习中数学的基本概念和算法。它适合初学者学习和入门,也可以作为复习和回顾的参考资料。 ### 回答2: 白话机器学习的数学PDF是一本以简明易懂的语言阐述机器学习中涉及的数学原理和概念的电子书。它旨在帮助读者更好地理解机器学习算法背后的数学基础,为他们提供一个轻松的学习资源。 这本书首先介绍了机器学习的基本概念和应用领域,然后逐步深入到数学原理。它包括了涵盖机器学习所需的一系列数学概念,如线性代数、概率论、统计学和优化理论。 在书中,数学原理的阐述遵循了白话风格,尽可能用通俗语言解释复杂的数学概念。它避免使用过多的数学符号和公式,而是通过图表和实际案例来讲解,以增加读者的理解和兴趣。 除了数学原理的介绍,这本PDF还提供了一些机器学习算法的实际应用示例和编程实践。这有助于读者将所学的数学知识应用到实际问题中,并加深对机器学习的理解。 总而言之,白话机器学习的数学PDF是一本适合初学者和希望巩固数学基础的机器学习爱好者阅读的书籍。它通过简单易懂的语言讲解了机器学习所需的数学知识,帮助读者更好地掌握机器学习算法的原理和应用。 ### 回答3: 白话机器学习的数学PDF是一份以简单易懂的语言解释机器学习中所涉及的数学概念和方法的文档。机器学习是一门将数学、统计学和计算机科学相结合的学科,因此理解其中的数学原理是非常重要的。 这份PDF将数学概念和方法以白话的方式呈现,使得读者可以更轻松地理解和学习。它包含了机器学习中常用的数学概念,如线性代数、统计学和概率论等。读者可以在其中找到关于向量、矩阵、矩阵运算、概率分布、条件概率以及最小二乘法等内容的解释和示例。 这份PDF的目的是帮助读者建立对机器学习数学理论的基本认识,使其能够更好地应用这些知识于实际问题中。通过简单易懂的解释和示例,读者可以更好地理解和运用机器学习中的数学原理。 总而言之,白话机器学习的数学PDF是一份让读者更轻松地理解和学习机器学习中所涉及的数学概念和方法的文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HDuBois

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值