文献阅读分享:《负面情绪更吸睛?利用大型语言模型重构新闻推荐系统中的情感框架》

标题期刊年份
Negativity Sells? Using an LLM to Affectively Reframe News Articles in a Recommender SystemRecSys ’242024

📑 论文背景

在当今信息爆炸的时代,新闻推荐系统(News Recommender Systems, NRS)成为用户获取新闻的重要工具。然而,新闻内容的呈现方式(即新闻框架)对用户的参与度和付费意愿有着深远的影响。随着人工智能技术的发展,大型语言模型(LLMs)逐渐被引入新闻生产过程,为新闻框架的重构提供了新的可能性。本文通过实验研究,探讨了基于LLM的情感框架重构对用户情感、参与度和付费意愿的影响。

🔗 相关工作

新闻推荐系统(NRS)的核心在于缓解信息过载,通过个性化推荐满足用户的兴趣偏好 [1]。情感框架(Affective Framing)则通过在新闻文本和图像中嵌入情感倾向,影响读者的情感状态和决策过程 [2]。然而,以往研究多集中于单一维度(如仅文本或仅图像),缺乏对文本与图像情感一致性对用户行为影响的系统研究。

🧠 方法与模型

本文采用的模型是 OpenAI 的 ChatGPT-4,利用其强大的自然语言处理能力,对新闻标题进行情感重构。模型输入为原始新闻标题,输出为正向或负向情感框架的标题。实验设计了 2(正向/负向标题)×3(正向/负向/无图像) 的六种条件组合,通过用户研究平台收集数据。

🧪 实验设计

实验选取了《华盛顿邮报》的18篇新闻文章,涵盖堕胎、经济和枪支管制三个主题。每篇文章生成正向和负向两种情感框架的标题,并搭配不同情感倾向的图像。用户被随机分配到六种条件组合中,阅读三篇新闻预览,并评估其情感状态、参与度和付费意愿。

💡 创新点
  1. LLM驱动的情感框架重构:首次将LLM应用于新闻推荐系统中的情感框架重构,探索其对用户情感和行为的影响。

  2. 多模态情感一致性研究:同时考虑文本和图像的情感一致性对用户参与度和付费意愿的影响,填补了现有研究的空白。

  3. 用户付费意愿的量化分析:通过实验数据,量化分析了情感框架对用户付费意愿的直接影响。

📊 实验结果

实验结果显示,负向情感框架显著激发了用户的情感反应,尤其是当负向文本与负向图像一致时,用户的情感变化最为明显 [3]。此外,负向情感框架的新闻标题显著提高了用户的付费意愿,而正向情感框架则对付费意愿影响较小 [4]。有趣的是,文本与图像的情感一致性对用户参与度的影响并不显著,但在付费意愿上表现出一定的交互作用 [5]。

🎯 方法细节
  • 模型参数:ChatGPT-4的温度参数设置为0.8,Top_P参数为1.0,以确保生成的文本既具有创造性又保持连贯性 [6]。

  • 情感状态评估:采用国际正负情感量表(I-PANAS-SF)对用户的情感状态进行前后对比分析 [7]。

  • 结构方程模型(SEM):用于分析情感框架、用户参与度和付费意愿之间的关系,模型拟合度良好 [8]。

📈 结论

本文研究表明,LLM驱动的负向情感框架重构能够显著提高用户的付费意愿,尤其是在文本与图像情感一致的情况下。这一发现为新闻推荐系统的设计提供了新的视角,也为新闻行业的AI应用提供了理论支持。

🌟 未来展望

未来的研究可以进一步探索多模态情感框架在不同新闻主题和用户群体中的效果,同时考虑引入更复杂的交互因素,如用户的社会背景和新闻消费习惯。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值