标题 | 期刊 | 年份 | 关键词 | 项目地址 |
---|---|---|---|---|
ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection | CVPR | 2024 | OOD检测、Few-Shot学习、CLIP、ID-like样本 | 项目地址 |
概览
今天我们来分享一篇来自CVPR 2024的论文:ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection。这篇论文由天津大学和郑州大学的研究人员合作完成,提出了一种新颖的少样本(Few-Shot)离群值(Out-of-Distribution,OOD)检测框架。🔍
研究背景
在机器学习模型的实际部署中,我们经常会遇到训练时未见过的OOD样本,这在自动驾驶和医疗诊断等领域可能引发严重的安全问题。因此,OOD检测对于机器学习模型的安全部署至关重要。🚨
创新点
- ID-like样本的发现:论文提出了一种方法,使用CLIP从ID样本的邻近空间中发现与ID样本相似的OOD样本,即ID-like样本。
- Prompt Learning框架:提出了一个利用ID-like样本进一步利用CLIP进行OOD检测的提示学习框架。
- 少样本学习: