论文信息
- 标题:Instructing and Prompting Large Language Models for Explainable Cross-domain Recommendations
- 期刊:18th ACM Conference on Recommender Systems (RecSys ’24)
- 年份:2024
- 关键词:#CrossDomainRecommendations #RecommenderSystems #LargeLanguageModels #InstructionTuning
🌟 研究背景
在信息爆炸的时代,推荐系统成为了我们日常生活中不可或缺的一部分,帮助我们筛选出感兴趣的内容。特别是跨领域推荐系统(CDR),它们能够在不同的领域之间进行知识迁移,为用户提供更加个性化的推荐。
💡 创新点
这篇论文的最大亮点在于利用大型语言模型(LLMs)来提供可解释的跨领域推荐。作者提出了一种全新的策略,通过指导LLM处理CDR任务、设计个性化提示,以及在零样本和单样本设置中提取推荐和自然语言解释,从而解决了数据稀疏性问题。
🔍 方法介绍
研究者们设计了一个包含四个阶段的流程:
- 数据预处理:准备适合LLM处理的数据。
- 指令调整:通过部分数据训练模型,使其能够处理CDR任务。
- 提示LLMs进行CDR:构建基于用户偏好的个性化提示&#