论文阅读笔记:跨领域推荐系统新突破

论文信息

  • 标题:Instructing and Prompting Large Language Models for Explainable Cross-domain Recommendations
  • 期刊:18th ACM Conference on Recommender Systems (RecSys ’24)
  • 年份:2024
  • 关键词:#CrossDomainRecommendations #RecommenderSystems #LargeLanguageModels #InstructionTuning

🌟 研究背景

在信息爆炸的时代,推荐系统成为了我们日常生活中不可或缺的一部分,帮助我们筛选出感兴趣的内容。特别是跨领域推荐系统(CDR),它们能够在不同的领域之间进行知识迁移,为用户提供更加个性化的推荐。

💡 创新点

这篇论文的最大亮点在于利用大型语言模型(LLMs)来提供可解释的跨领域推荐。作者提出了一种全新的策略,通过指导LLM处理CDR任务、设计个性化提示,以及在零样本和单样本设置中提取推荐和自然语言解释,从而解决了数据稀疏性问题。

🔍 方法介绍

研究者们设计了一个包含四个阶段的流程:

  1. 数据预处理:准备适合LLM处理的数据。
  2. 指令调整:通过部分数据训练模型,使其能够处理CDR任务。
  3. 提示LLMs进行CDR:构建基于用户偏好的个性化提示&#
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值