【文献精读】AAAI24:FacetCRS:打破对话推荐系统中的“信息茧房”

标题FacetCRS: Multi-Faceted Preference Learning for Pricking Filter Bubbles in Conversational Recommender System
期刊The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)
年份2024
关键词Conversational Recommender System (CRS), Filter Bubbles, Multi-Faceted Preference Learning, Knowledge Graph, Natural Language Processing

🌟研究背景

在当今信息爆炸的时代,推荐系统已成为我们获取信息的重要工具。然而,推荐系统中的“信息茧房”现象却引发了广泛关注。所谓“信息茧房”,是指用户长期被系统推送与自身偏好高度一致的内容,导致信息视野狭窄,缺乏多样性。尤其在对话推荐系统(CRS)中,这一问题更为突出。传统的推荐方法大多关注静态场景,忽略了用户与系统交互过程中“信息茧房”的动态加剧。本文聚焦于如何在动态交互中打破“信息茧房”,提升推荐系统的多样性与用户满意度。

🧬相关工作

以往的研究主要集中在静态推荐场景下的“信息茧房”问题,通过分析用户行为数据和偏好标签来缓解这一现象。然而,这些方法大多依赖于稀疏的历史数据,难以充分挖掘用户的多样化偏好。此外,部分研究尝试通过强化学习等手段在交互式推荐系统中缓解“信息茧房”,但这些方法的交互形式较为单一,无法充分利用自然语言表达的复杂用户偏好。本文在对话推荐系统框架下,提出了一种全新的多维度偏好学习方法,通过整合多种知识源,动态捕捉用户偏好,以打破“信息茧房”。

🎨模型架构与输入输出

FacetCRS模型架构如下图所示:

输入

  • 用户与系统的对话历史(文本形式)。

  • 用户对物品的评论数据。

  • 知识图谱中的实体和单词关系。

输出

  • 推荐物品列表。

  • 下一个对话回合的生成文本。

模型通过多维度偏好学习模块,将用户偏好分解为实体、单词、上下文和评论四个维度,分别建模并融合,最终生成综合的用户偏好表示。这一表示不仅用于精准推荐,还用于生成自然流畅的对话回复。

🔬方法与创新

多维度偏好学习

  1. 实体维度:利用DBpedia知识图谱提取与物品相关的实体,通过关系图卷积网络(RGCN)学习实体嵌入,增强用户与物品之间的关系建模。这使得系统能够发现与当前物品相关的新物品,从而提供多样化的推荐。

    创新点

  2. 多维度偏好建模:首次在对话推荐系统中将用户偏好分解为实体、单词、上下文和评论四个维度,全面捕捉用户多样化偏好。

  3. 端到端框架:提出一个端到端的对话推荐系统框架,自适应学习不同层次的偏好表示和多方面知识,提升推荐质量和对话生成能力。

  4. 动态交互缓解“信息茧房”:通过自然语言对话中的实时用户-物品交互,动态调整推荐内容,有效缓解“信息茧房”现象。

  • 📊实验结果

    推荐任务

    在REDIAL和TG-REDIAL数据集上,FacetCRS在Recall@k指标上显著优于现有基线方法,证明了其在推荐任务中的优越性。

    数据集R@1R@10R@50
    REDIAL0.041*0.202*0.386*
    TG-REDIAL0.006*0.034*0.080*

    对话任务

    在自动评估(Distinct n-gram)和人工评估(Fluency和Informativeness)中,FacetCRS均优于现有方法,证明了其在对话生成任务中的优势。

数据集D-2D-3D-4FluencyInformativeness
REDIAL0.126*0.209*0.305*1.50*1.39*
TG-REDIAL0.113*0.228*0.312*--

“信息茧房”缓解

通过Iso-Index和Coverage指标,以及物品相似性热图,验证了FacetCRS在缓解“信息茧房”方面的有效性。

数据集Iso-Index ↓Coverage ↑
REDIAL0.08567.6436
TG-REDIAL0.090210.8172

📈总结

FacetCRS通过多维度偏好学习动态捕捉用户偏好,有效缓解了对话推荐系统中的“信息茧房”现象。其创新的多维度融合方法和端到端框架,不仅提升了推荐质量,还增强了对话生成能力未来,我们期待这一方法在更多实际场景中的应用,为用户提供更加个性化、多样化的推荐体验。

#FacetCRS #对话推荐系统 #信息茧房 #多维度偏好学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值