常数变易法

本篇笔记的内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


一阶线性微分方程

d y d x = P ( x ) y + Q ( x ) (1) \frac{\mathrm{d}y}{\mathrm{d}x}=P(x)y+Q(x)\tag{1} dxdy=P(x)y+Q(x)(1)

Q ( x ) ≠ 0 Q(x)\neq0 Q(x)=0 ,则 ( 1 ) (1) (1) 为一阶非齐次线性微分方程

Q ( x ) = 0 Q(x)=0 Q(x)=0 时, ( 1 ) (1) (1) 为一阶齐次线性微分方程,其通解为

y = c e ∫ P ( x ) d x (2) y=ce^{\int P(x)\mathrm{d}x}\tag{2} y=ceP(x)dx(2)

将常数 c c c 变成 x x x 的待定函数 c ( x ) c(x) c(x)

y = c ( x ) e ∫ P ( x ) d x (3) y=c(x)e^{\int P(x)\mathrm{d}x}\tag{3} y=c(x)eP(x)dx(3)

对上式求导,得

d y d x = d c ( x ) d x e ∫ P ( x ) d x + c ( x ) P ( x ) e ∫ P ( x ) d x (4) \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{\mathrm{d}c(x)}{\mathrm{d}x}e^{\int P(x)\mathrm{d}x}+c(x)P(x)e^{\int P(x)\mathrm{d}x}\tag{4} dxdy=dxdc(x)eP(x)dx+c(x)P(x)eP(x)dx(4)

( 3 ) (3) (3) 带入 ( 1 ) (1) (1) ,得

d y d x = P ( x ) c ( x ) e ∫ P ( x ) d x + Q ( x ) (5) \tag{5}\frac{\mathrm{d}y}{\mathrm{d}x}=P(x)c(x)e^{\int P(x)\mathrm{d}x}+Q(x) dxdy=P(x)c(x)eP(x)dx+Q(x)(5)

对比 ( 4 ) , ( 5 ) (4),(5) (4),(5) ,得

d c ( x ) d x e ∫ P ( x ) d x = Q ( x ) ∴ c ( x ) = ∫ Q ( x ) e − ∫ P ( x ) d x d x + c ‾ (6) \frac{\mathrm{d}c(x)}{\mathrm{d}x}e^{\int P(x)\mathrm{d}x}=Q(x)\\ \tag{6}\therefore c(x)=\int Q(x)e^{-\int P(x)\mathrm{d}x}\mathrm{d}x+\overline{c} dxdc(x)eP(x)dx=Q(x)c(x)=Q(x)eP(x)dxdx+c(6)

( 6 ) (6) (6) 带入 ( 3 ) (3) (3) ,得到 ( 1 ) (1) (1) 的通解为

y = e ∫ P ( x ) d x ( ∫ Q ( x ) e − ∫ P ( x ) d x d x + c ‾ ) (7) \tag{7}y=e^{\int P(x)\mathrm{d}x}\bigg(\int Q(x)e^{-\int P(x)\mathrm{d}x}\mathrm{d}x+\overline{c}\bigg) y=eP(x)dx(Q(x)eP(x)dxdx+c)(7)


解方程

d y d x = y 2 x − y 2 \frac{\mathrm{d}y}{\mathrm{d}x}=\frac{y}{2x-y^2} dxdy=2xy2y

如果以 y y y 为未知函数,原方程不是线性微分方程,但可以把 x x x 看作未知函数, y y y 看作自变量,原方程可变为一阶非齐次线性微分方程,即

d x d y = 2 x − y 2 y = 2 x y − y \frac{\mathrm{d}x}{\mathrm{d}y}=\frac{2x-y^2}{y}=\frac{2x}{y}-y dydx=y2xy2=y2xy

先求解对应的齐次线性微分方程

d x d y = 2 x y \frac{\mathrm{d}x}{\mathrm{d}y}=\frac{2x}{y} dydx=y2x

得通解

x = c y 2 x=cy^2 x=cy2

然后,用常数变易法,将上式中的 c c c 变易为函数 c ( y ) c(y) c(y) ,并求导,得

d x d y = d c ( y ) d y y 2 + 2 c ( y ) y \frac{\mathrm{d}x}{\mathrm{d}y}=\frac{\mathrm{d}c(y)}{\mathrm{d}y}y^2+2c(y)y dydx=dydc(y)y2+2c(y)y

结合原方程以及 x = c ( x ) y 2 x=c(x)y^2 x=c(x)y2 ,整理得

d c ( y ) d y = − 1 y ∴ c ( y ) = − ln ⁡ ∣ y ∣ + c ‾ \frac{\mathrm{d}c(y)}{\mathrm{d}y}=-\frac{1}{y}\\ \therefore c(y)=-\ln{|y|}+\overline{c} dydc(y)=y1c(y)=lny+c

所以原方程的通解为

x = y 2 ( c ‾ − ln ⁡ ∣ y ∣ ) x=y^2(\overline{c}-\ln{|y|}) x=y2(clny)

其中 c ‾ \overline{c} c 为任意常数

  • 15
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值