本篇笔记内容来源
概率论与数理统计教程(第三版) 茆诗松 高等教育出版社
最大值分布
设 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn 是相互独立的 nnn 个随机变量,若 Y=max{X1,X2,⋯ ,Xn}Y=\max\{X_1,X_2,\cdots,X_n\}Y=max{X1,X2,⋯,Xn} . 试在以下情况下求 YYY 的分布
-
X1∼Fi(x),i=1,2,⋯ ,nX_1\sim F_i(x),i=1,2,\cdots,nX1∼Fi(x),i=1,2,⋯,n
FY(y)=P(max{X1,X2,⋯ ,Xn}⩽y)=P(X1⩽y,X2⩽y,⋯ ,Xn⩽y)=P(X1⩽y)P(X2⩽y)⋯P(Xn⩽y)=∏i=1nFi(y) \begin{align*} F_Y(y)&=P(\max\{X_1,X_2,\cdots,X_n\}\leqslant y)\\ &=P(X_1\leqslant y,X_2\leqslant y,\cdots,X_n\leqslant y)\\ &=P(X_1\leqslant y)P(X_2\leqslant y)\cdots P(X_n\leqslant y)\\ &=\prod^n_{i=1}F_i(y) \end{align*} FY(y)=P(max{X1,X2,⋯,Xn}⩽y)=P(X1⩽y,X2⩽y,⋯,Xn⩽y)=P(X1⩽y)P(X2⩽y)⋯P(Xn⩽y)=i=1∏nFi(y)
-
诸 XiX_iXi 同分布,即 Xi∼F(x),i=1,2,⋯ ,nX_i\sim F(x),i=1,2,\cdots,nXi∼F(x),i=1,2,⋯,n
将 XiX_iXi 的共同分布带入上式即可
FY(y)=[F(y)]n F_Y(y)=[F(y)]^n FY(y)=[F(y)]n
-
诸 XiX_iXi 为连续随机变量,且诸 XiX_iXi 同分布,即 XiX_iXi 的密度函数均为 p(x)p(x)p(x)
YYY 的分布函数仍为上式,密度函数为分布函数的导数
pY(y)=FY′(y)=n[F(y)]n−1p(y) p_Y(y)=F^{'}_Y(y)=n[F(y)]^{n-1}p(y) pY(y)=FY′(y)=n[F(y)]n−1p(y)
最小值分布同理
设 X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,⋯,Xn 是相互独立的 nnn 个随机变量,若 Z=min{X1,X2,⋯ ,Xn}Z=\min\{X_1,X_2,\cdots,X_n\}Z=min{X1,X2,⋯,Xn} . 试在以下情况下求 ZZZ 的分布
-
X1∼Fi(x),i=1,2,⋯ ,nX_1\sim F_i(x),i=1,2,\cdots,nX1∼Fi(x),i=1,2,⋯,n
FZ(z)=P(min{X1,X2,⋯ ,Xn}⩽z)=1−P(min{X1,X2,⋯ ,Xn}>z)=1−P(X1>y,X2>y,⋯ ,Xn>y)=1−P(X1>y)P(X2>y)⋯P(Xn>y)=1−∏i=1n[1−Fi(z)] \begin{align*} F_Z(z)&=P(\min\{X_1,X_2,\cdots,X_n\}\leqslant z)\\ &=1-P(\min\{X_1,X_2,\cdots,X_n\}> z)\\ &=1-P(X_1>y,X_2>y,\cdots,X_n>y)\\ &=1-P(X_1>y)P(X_2>y)\cdots P(X_n>y)\\ &=1-\prod^n_{i=1}[1-F_i(z)] \end{align*} FZ(z)=P(min{X1,X2,⋯,Xn}⩽z)=1−P(min{X1,X2,⋯,Xn}>z)=1−P(X1>y,X2>y,⋯,Xn>y)=1−P(X1>y)P(X2>y)⋯P(Xn>y)=1−i=1∏n[1−Fi(z)]
-
诸 XiX_iXi 同分布,即 Xi∼F(x),i=1,2,⋯ ,nX_i\sim F(x),i=1,2,\cdots,nXi∼F(x),i=1,2,⋯,n
FZ(z)=1−[1−F(z)]n F_Z(z)=1-[1-F(z)]^n FZ(z)=1−[1−F(z)]n
-
诸 XiX_iXi 为连续随机变量,且诸 XiX_iXi 同分布,即 XiX_iXi 的密度函数均为 p(x)p(x)p(x)
pZ(z)=FZ′(z)=n[1−F(z)]n−1p(z) p_Z(z)=F^{'}_Z(z)=n[1-F(z)]^{n-1}p(z) pZ(z)=FZ′(z)=n[1−F(z)]n−1p(z)