最大值与最小值的分布(多维随机变量函数的分布)

本篇笔记内容来源
概率论与数理统计教程(第三版) 茆诗松 高等教育出版社


最大值分布

X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是相互独立的 nnn 个随机变量,若 Y=max⁡{X1,X2,⋯ ,Xn}Y=\max\{X_1,X_2,\cdots,X_n\}Y=max{X1,X2,,Xn} . 试在以下情况下求 YYY 的分布

  1. X1∼Fi(x),i=1,2,⋯ ,nX_1\sim F_i(x),i=1,2,\cdots,nX1Fi(x),i=1,2,,n

    FY(y)=P(max⁡{X1,X2,⋯ ,Xn}⩽y)=P(X1⩽y,X2⩽y,⋯ ,Xn⩽y)=P(X1⩽y)P(X2⩽y)⋯P(Xn⩽y)=∏i=1nFi(y) \begin{align*} F_Y(y)&=P(\max\{X_1,X_2,\cdots,X_n\}\leqslant y)\\ &=P(X_1\leqslant y,X_2\leqslant y,\cdots,X_n\leqslant y)\\ &=P(X_1\leqslant y)P(X_2\leqslant y)\cdots P(X_n\leqslant y)\\ &=\prod^n_{i=1}F_i(y) \end{align*} FY(y)=P(max{X1,X2,,Xn}y)=P(X1y,X2y,,Xny)=P(X1y)P(X2y)P(Xny)=i=1nFi(y)

  2. XiX_iXi 同分布,即 Xi∼F(x),i=1,2,⋯ ,nX_i\sim F(x),i=1,2,\cdots,nXiF(x),i=1,2,,n

    XiX_iXi 的共同分布带入上式即可

    FY(y)=[F(y)]n F_Y(y)=[F(y)]^n FY(y)=[F(y)]n

  3. XiX_iXi 为连续随机变量,且诸 XiX_iXi 同分布,即 XiX_iXi 的密度函数均为 p(x)p(x)p(x)

    YYY 的分布函数仍为上式,密度函数为分布函数的导数

    pY(y)=FY′(y)=n[F(y)]n−1p(y) p_Y(y)=F^{'}_Y(y)=n[F(y)]^{n-1}p(y) pY(y)=FY(y)=n[F(y)]n1p(y)


最小值分布同理

X1,X2,⋯ ,XnX_1,X_2,\cdots,X_nX1,X2,,Xn 是相互独立的 nnn 个随机变量,若 Z=min⁡{X1,X2,⋯ ,Xn}Z=\min\{X_1,X_2,\cdots,X_n\}Z=min{X1,X2,,Xn} . 试在以下情况下求 ZZZ 的分布

  1. X1∼Fi(x),i=1,2,⋯ ,nX_1\sim F_i(x),i=1,2,\cdots,nX1Fi(x),i=1,2,,n

    FZ(z)=P(min⁡{X1,X2,⋯ ,Xn}⩽z)=1−P(min⁡{X1,X2,⋯ ,Xn}>z)=1−P(X1>y,X2>y,⋯ ,Xn>y)=1−P(X1>y)P(X2>y)⋯P(Xn>y)=1−∏i=1n[1−Fi(z)] \begin{align*} F_Z(z)&=P(\min\{X_1,X_2,\cdots,X_n\}\leqslant z)\\ &=1-P(\min\{X_1,X_2,\cdots,X_n\}> z)\\ &=1-P(X_1>y,X_2>y,\cdots,X_n>y)\\ &=1-P(X_1>y)P(X_2>y)\cdots P(X_n>y)\\ &=1-\prod^n_{i=1}[1-F_i(z)] \end{align*} FZ(z)=P(min{X1,X2,,Xn}z)=1P(min{X1,X2,,Xn}>z)=1P(X1>y,X2>y,,Xn>y)=1P(X1>y)P(X2>y)P(Xn>y)=1i=1n[1Fi(z)]

  2. XiX_iXi 同分布,即 Xi∼F(x),i=1,2,⋯ ,nX_i\sim F(x),i=1,2,\cdots,nXiF(x),i=1,2,,n

    FZ(z)=1−[1−F(z)]n F_Z(z)=1-[1-F(z)]^n FZ(z)=1[1F(z)]n

  3. XiX_iXi 为连续随机变量,且诸 XiX_iXi 同分布,即 XiX_iXi 的密度函数均为 p(x)p(x)p(x)

    pZ(z)=FZ′(z)=n[1−F(z)]n−1p(z) p_Z(z)=F^{'}_Z(z)=n[1-F(z)]^{n-1}p(z) pZ(z)=FZ(z)=n[1F(z)]n1p(z)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值