本篇笔记的内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社
伯努利(Bernoulli)微分方程
d y d x = P ( x ) y + Q ( x ) y n ( n ≠ 0 , 1 且为实数 ) \frac{\mathrm{d}y}{\mathrm{d}x}=P(x)y+Q(x)y^n(n\neq0,1且为实数) dxdy=P(x)y+Q(x)yn(n=0,1且为实数)
其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)在考虑的区间上是 x x x的连续函数
利用变量变换化伯努利微分方程为线性微分方程
当 y ≠ 0 y\neq0 y=0时,两边乘以 y − n y^{-n} y−n,得
y − n d y d x = P ( x ) y 1 − n + Q ( x ) (1) y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}=P(x)y^{1-n}+Q(x)\tag{1} y−ndxdy=P(x)y1−n+Q(x)(1)
引入变量变换
z = y 1 − n (2) z=y^{1-n}\tag{2} z=y1−n(2)
从而
d z d x = ( 1 − n ) y − n d y d x (3) \tag{3}\frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x} dxdz=(1−n)y−ndxdy(3)
将(2),(3)带入(1),得
d z d x = ( 1 − n ) P ( x ) z + ( 1 − n ) Q ( x ) \frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)P(x)z+(1-n)Q(x) dxdz=(1−n)P(x)z+(1−n)Q(x)
之后可按线性微分方程的方法求通解,然后代回原变量即可得到伯努利
微分方程的通解. 此外,当 n > 0 n>0 n>0时,方程还有解 y = 0 y=0 y=0.
例
求方程 d y d x = 6 y x − x y 2 \frac{\mathrm{d}y}{\mathrm{d}x}=6\frac{y}{x}-xy^2 dxdy=6xy−xy2 的通解
解 这是 n = 2 n=2 n=2 时的伯努利微分方程. 作变量变换
z = y − 1 , P ( x ) = 6 x , Q ( x ) = − x z=y^{-1},P(x)=\frac{6}{x},Q(x)=-x z=y−1,P(x)=x6,Q(x)=−x
化为线性微分方程(一阶非齐次)
d z d x = − 6 x z + x \frac{\mathrm{d}z}{\mathrm{d}x}=-\frac{6}{x}z+x dxdz=−x6z+x
解线性微分方程,得
z = x 2 8 + c ‾ x 6 z=\frac{x^2}{8}+\frac{\overline{c}}{x^6} z=8x2+x6c
变回原来变量 y y y,原方程的通解为
1 y = x 2 8 + c ‾ x 6 \frac{1}{y}=\frac{x^2}{8}+\frac{\overline{c}}{x^6} y1=8x2+x6c
此外,方程还有解 y = 0 y=0 y=0