伯努利方程

本篇笔记的内容来源
常微分方程(第四版) (王高雄,周之铭,朱思铭,王寿松) 高等教育出版社


伯努利(Bernoulli)微分方程

d y d x = P ( x ) y + Q ( x ) y n ( n ≠ 0 , 1 且为实数 ) \frac{\mathrm{d}y}{\mathrm{d}x}=P(x)y+Q(x)y^n(n\neq0,1且为实数) dxdy=P(x)y+Q(x)yn(n=0,1且为实数)

其中 P ( x ) , Q ( x ) P(x),Q(x) P(x),Q(x)在考虑的区间上是 x x x的连续函数


利用变量变换化伯努利微分方程为线性微分方程

y ≠ 0 y\neq0 y=0时,两边乘以 y − n y^{-n} yn,得

y − n d y d x = P ( x ) y 1 − n + Q ( x ) (1) y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x}=P(x)y^{1-n}+Q(x)\tag{1} yndxdy=P(x)y1n+Q(x)(1)

引入变量变换

z = y 1 − n (2) z=y^{1-n}\tag{2} z=y1n(2)

从而

d z d x = ( 1 − n ) y − n d y d x (3) \tag{3}\frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x} dxdz=(1n)yndxdy(3)

将(2),(3)带入(1),得

d z d x = ( 1 − n ) P ( x ) z + ( 1 − n ) Q ( x ) \frac{\mathrm{d}z}{\mathrm{d}x}=(1-n)P(x)z+(1-n)Q(x) dxdz=(1n)P(x)z+(1n)Q(x)

之后可按线性微分方程的方法求通解,然后代回原变量即可得到伯努利

微分方程的通解. 此外,当 n > 0 n>0 n>0时,方程还有解 y = 0 y=0 y=0.


求方程 d y d x = 6 y x − x y 2 \frac{\mathrm{d}y}{\mathrm{d}x}=6\frac{y}{x}-xy^2 dxdy=6xyxy2 的通解

这是 n = 2 n=2 n=2 时的伯努利微分方程. 作变量变换

z = y − 1 , P ( x ) = 6 x , Q ( x ) = − x z=y^{-1},P(x)=\frac{6}{x},Q(x)=-x z=y1,P(x)=x6,Q(x)=x

化为线性微分方程(一阶非齐次)

d z d x = − 6 x z + x \frac{\mathrm{d}z}{\mathrm{d}x}=-\frac{6}{x}z+x dxdz=x6z+x

解线性微分方程,得

z = x 2 8 + c ‾ x 6 z=\frac{x^2}{8}+\frac{\overline{c}}{x^6} z=8x2+x6c

变回原来变量 y y y,原方程的通解为

1 y = x 2 8 + c ‾ x 6 \frac{1}{y}=\frac{x^2}{8}+\frac{\overline{c}}{x^6} y1=8x2+x6c

此外,方程还有解 y = 0 y=0 y=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值