资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
(图3.1-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某处的一条路
径,使该路径所经过的数字的总和最大。
●每一步可沿左斜线向下或右斜线向下走;
●1<三角形行数≤100;
●三角形中的数字为整数0,1,…99;
(图3.1-1)
输入格式
文件中首先读到的是三角形的行数。
接下来描述整个三角形
输出格式
最大总和(整数)
样例输入
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
样例输出
30
解题思路:
该题乍一看像是枚举,或者是动态规划,而且是不规律的动态规划,其实,道理是这样的。观察倒数第二行中的每一项,路径的最大值从这里开始运算。
我们以一个串序号为例
1
2 3
4 5 6
7 8 9 10
先看倒数第二行
4 = max(7,8) + 4
5 = max(8,9) + 5
6 = max(9,10) + 6
接着向上一行
2 = max(4,5) + 2
3 = max(5,6) + 3
接着向上一行
1 = max(2,3) + 1
规律就是:a[i][j] = max(a[i + 1][j], a[i + 1][j + 1]) + a[i][j];
代码如下:
#include<bits/stdc++.h>
using namespace std;
int a[101][101];
int main() {
int n, i, j;
cin >> n;
for (i = 0; i < n; i ++) {
for (j = 0; j <= i; j ++) {
cin >> a[i][j];
}
}
for (i = n - 2; i >= 0; i --) {
for (j = 0; j <= i; j ++) {
a[i][j] = max(a[i + 1][j], a[i + 1][j + 1]) + a[i][j];
}
}
cout << a[0][0];
return 0;
}
思路参考链接:https://blog.csdn.net/q1916569889/article/details/50299659