OS-Genesis: Automating GUI Agent Trajectory Construction via Reverse Task Synthesis
前言
高质量轨迹数据的缺乏是训练GUI智能体的瓶颈,而人工标注既费时又费力,合成的轨迹数据质量较低。为突破这一瓶颈,本提出了创新的‘交互驱动’方法,有效合成高质量的GUI轨迹数据,从而为GUI智能体的发展提供了有力支持。Paper | https://arxiv.org/abs/2412.19723 |
---|---|
HomePage | https://qiushisun.github.io/OS-Genesis-Home/ |
Abstract
当前,基于视觉语言模型(VLMs)的GUI代理面临缺乏高质量操作轨迹的瓶颈。常规的数据采集方法,如人工标注或根据预定义任务合成数据,往往需要大量的资源,且难以保证数据质量,同时还面临数据多样性不足和与真实场景差距较大的问题。为此,本文提出了OS-Genesis,一个创新的GUI数据合成框架。该框架通过智能体与环境的交互,反向合成高质量的任务,以探索轨迹数据。此外,作者设计了轨迹奖励函数,以确保生成轨迹的质量。在动态测评环境中的结果表明,OS-Genesis相对现有的合成方法,在轨迹质量和多样性方面都表现出了显著的提升。