【五】XJCO3221 Parallel Computation-Loop parallelism and data races

1. Overview

Previous lectures

In Lecture 3 we saw how two problems could be parallelised:

  1. Vector addition, where two one-dimensional arrays were added together element-by-element.
  2. Mandelbrot set, where pixel colours were calculated to generate a 2D image.

However, neither of these problems have any data dependencies.

  1. Each vector element was calculated independently of other elements.
  2. Each pixel colour was calculated independently of the others.

 This lecture

In this lecture we will look how to parallelise problems that do have data dependencies.

  • Can lead to data races on shared memory systems.
  • Behaviour then becomes non-deterministic.
  • May require algorithm re-design to remove dependencies.

We will then look at three examples of loop parallel problems and how their dependencies can be resolved.

2. Data races

2.1Example leading to a data race

Example of a data race-数据争用

Consider the following pseudecode1 for two concurrent threads, where each thread accesses the same variable x. x=0 at the start of the code segment.

 Non-determinism

The result may differ each time the program is executed.

An example of non-determinism [Lecture 3].

The scheduler runs threads depending on various factors, including other applications and OS tasks.

  • Cannot predict which thread is launched first.
  • The OS may suspend threads to make way for other tasks (pre-emptive multitasking).
  • The instructions may become interleaved.

2.2 Interleaved instructions and non-determinism

Interleaved instructions (example)

Recall x=0 initially.

1 a = x ; // Thread 0: a now 0
2 a += 1; // Thread 0: a now 1
3 b = x ; // Thread 1: b now 0
4 x = a ; // Thread 0: x now 1
5 b += 2; // Thread 1: b now 2
6 x = b ; // Thread 1: x now 2

 In this example, x=2 at the end.

  • Possible to get x=1 or x=3 by different interleaving of instructions (check left as exercise).

 Race conditions

This is known as a data race or a race condition.

  • Result of calculation depends on which thread reaches its instructions first.
  • Non-deterministic, which is usually undesirable.

Only an issue for shared memory.

  • If each thread had its own x, there would be no race.
  • In this example, if each thread had its own x, x=1 for thread 0 and x=2 for thread 1 at the end, regardless of any interleaving.

 Read-only does not lead to a data race

For a race condition to arise, at least one thread must write to x.

  • No race if all threads just read x.

 There is no race for the following example, as both threads only read x

For this example, x=0 (and a=1 and b=2) at the end.

2.3 Sequential consistency

Have assumed each thread executes its instructions in order.

  • i.e. have assumed sequential consistency.

Compilers often rearrange instructions to improve performance.

  • e.g. bring forward memory accesses, combine operations etc.
  • The result is the same in serial.
  • However, multithreading can confuse compilers.
  • In the original example, this means we can even get a=b=0![why]

 The volatile keyword

You may read that the way to solve this is to declare variables as volatile (in C/C++). However, this is only partially correct

  • volatile is for special memory, such as that read/written by external device (memory-mapped I/O).
  • The way compilers handle such variables is not guaranteed to work for multithreading

If this might be an issue, should use features specific to concurrent programming

  •  e.g. memory fences, std::atomic<> in C++11 etc.

Will come to atomics next lecture and Lecture 18.

3 Data dependancies in loop level parallelism

3.1 Loop parallelism

Often we are required to parallelise loops.

  • Known as loop parallelism.
  • If there are data dependencies, may have implicit data races within the loop.

 There is no systematic way to parallelise loops.

  • How to remove a dependency depends on context.
  • Consider extra resources or loops to reach the correct solution.

For the remainder of this lecture, will give examples of loops with data dependencies, and how to overcome them.

3.2 Example 1: Redundant variable(s)

Consider the following serial code:

1 float temp , a [ n ] , b [ n ] , c [ n ];
2 ... // Initialise arrays b and c
3
4 int i ;
5 for ( i =0; i < n ; i ++ )
6 {
7     temp = 0.5 f *( b [ i ] + c [ i ] ) ;
8     a [ i ] = temp ;
9 }

Here, temp is being used as a temporary variable.

  • Sometimes useful to make (more complex) code easier to read.

 Need to make temp a private (or local) variable:

1 # pragma omp parallel for
2 for ( i =0; i < n ; i ++ )
3 {
4     float temp = 0.5 f *( b [ i ] + c [ i ] ) ;
5     a [ i ] = temp ;
6 }

Can also use OpenMP’s private clause: 

1 # pragma omp parallel for private ( temp )
2 for ( i =0; i < n ; i ++ )
3 {
4     temp = 0.5 f *( b [ i ] + c [ i ] ) ;
5     a [ i ] = temp ;
6 }

cf. the inner loop counter in Lecture 3’s Mandelbrot set example.

3.3 Example 2: Shift dependency

shiftDependency.c

Consider a shift dependency:

1 float a [ n ];
2 ... // Initialise array a
3
4 int i ;
5 for ( i =0; i <n -1; i ++ )
6     a [ i ] = a [ i +1];

Naive parallelisation does not quite work:

1 # pragma omp parallel for
2 for ( i =0; i <n -1; i ++ )
3     a [ i ] = a [ i +1];

 A solution here is to copy the array a before the loop:

1 float atemp [ n ];
2
3 # pragma omp parallel for
4 for ( i =1; i < n ; i ++ )
5     atemp [ i ] = a [ i ];
6
7 # pragma omp parallel for
8 for ( i =0; i <n -1; i ++ )
9     a [ i ] = atemp [ i +1];

This comes at the expense of additional resources:

  • Memory for the array atemp.
  • CPU time to copy a to atemp.

Examples of parallel overheads.

3.4 Example 3: Red-black Gauss-Seidel

redBlackGaussSeidel.c

 Finally consider this:

1 for ( i =1; i <n -1; i ++ )
2     a [ i ] = 0.5 f * ( a [ i +1] + a [i -1] ) ;

Each element takes the average of the elements either side of it.

  • Can be used to smooth vector a, e.g. in image transformations (‘blurring’) with a 2D nested loop over pixels.
  • Also arises in numerical computation - the diffusion or heat equation solved using the Gauss-Seidel method.

 We could make a copy atemp as before.

  • In numerical computation, this is the Jacobi method.

However, this is undesirable in some situations:

  • Typically repeat the loop until ‘reaching’ the solution, which is faster (takes fewer iterations) when not using a copy.

Instead we consider a modified serial variant which is more amenable to parallelisation.

  • Known as red-black Gauss-Seidel, as it bears a resemblance to red and black squares on a chessboard (in 2D)

Update even elements first, then odd elements

Recall i%2 gives the remainder of division by 2, so e.g. i%2==0 if i is even.

1 int redBlack ;
2 for ( redBlack =0; redBlack <2; redBlack ++ )
3     for( i =1; i <n -1; i ++ )
4         if( i %2 == redBlack )
5         {
6             a [ i ] = 0.5 f * ( a [i -1] + a [ i +1] ) ;
7         }

The outer redBlack loop only loops over 2 values, 0 or 1.

  • When redBlack=0, only the elements of a[i] with i even are updated.
  • Similarly, only the odd are updated when redBlack=1.

 Note that for each loop, the calculations are now independent.

  • We have removed the dependency, albeit by slightly changing the serial algorithm.

 Now clear how to parallelise:

1 for ( redBlack =0; redBlack <2; redBlack ++ )
2     # pragma omp parallel for
3     for( i =1; i <n -1; i ++ )
4         if( i %2 == redBlack )
5         {
6             a [ i ] = 0.5 f * ( a [i -1] + a [ i +1] ) ;
7         }

There are no dependencies within the i-loop, because a[i-1] and a[i+1] were/will be updated in the other redBlack loop.

The ‘best’ parallel algorithm?

Notice that we changed Gauss-Seidel to the red-black variant to make it more efficient in parallel.

For Gauss-Seidel, this is the standard parallel variant.

Perfectly acceptable to do this if:

  1. The solution reached is still ‘correct.’
  2. Parallel scaling is good (for large arrays).

As a general observation, the ‘best’ parallel algorithm need not be directly related to the ‘best’ serial algorithm. 

4. Summary and next lecture

 This lecture we have seen how multiple threads with at least one writing to shared memory can lead to data races.

  • Outcome is not predictable (non-deterministic).
  • Can be a challenge to remove data dependencies from loops.
  • May require additional resources not present in the serial version, i.e. parallel overheads.

The next lecture will look at a way to synchronise threads within a parallel program and apply it to a linked list.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值