MapReduce源码分析总结

参考: 1 caibinbupt的源代码分析http://caibinbupt.javaeye.com2 coderplay的avaeye http://coderplay.javaeye.com/blog/295097http://coderplay.jav
摘要由CSDN通过智能技术生成

参考: 

1 caibinbupt源代码分析http://caibinbupt.javaeye.com

coderplay的avaeye 

http://coderplay.javaeye.com/blog/295097

http://coderplay.javaeye.com/blog/318602 

Javen-Studio 咖啡小屋

http://www.cppblog.com/javenstudio/articles/43073.html

MapReduce概述

    Map/Reduce是一个用于大规模数据处理的分布式计算模型,它最初是由Google工程师设计并实现的,Google已经将它完整的MapReduce论文公开发布了。其中对它的定义是,Map/Reduce是一个编程模型(programmingmodel),是一个用于处理和生成大规模数据集(processing and generating large data sets)的相关的实现。用户定义一个map函数来处理一个key/value对以生成一批中间的key/value对,再定义一个reduce函数将所有这些中间的有着相同key的values合并起来。很多现实世界中的任务都可用这个模型来表达。

MapReduce工作原理

    Map-Reduce框架的运作完全基于<key,value>对,即数据的输入是一批<key,value>对,生成的结果也是一批<key,value>对,只是有时候它们的类型不一样而已。Keyvalue的类由于需要支持被序列化(serialize)操作,所以它们必须要实现Writable接口,而且key的类还必须实现WritableComparable接口,使得可以让框架对数据集的执行排序操作。

    一个Map-Reduce任务的执行过程以及数据输入输出的类型如下所示:

    Map<k1,v1> ->list<k2,v2>

    Reduce<k2,list<v2>> -><k3,v3>

    下面通过一个的例子来详细说明这个过程。

    WordCountHadoop自带的一个例子,目标是统计文本文件中单词的个数。假设有如下的两个文本文件来运行WorkCount程序:

    Hello World Bye World

    Hello Hadoop GoodBye Hadoop

1 map数据输入

    Hadoop针对文本文件缺省使用LineRecordReader类来实现读取,一行一个key/value对,key取偏移量,value为行内容。

    如下是map1的输入数据:

Key1

Value1

0

Hello World Bye World

如下是map2的输入数据:

Key1

Value1

0

Hello Hadoop GoodBye Hadoop

2 map输出/combine输入

    如下是map1的输出结果

Key2

Value2

Hello

1

World

1

Bye

1

World

1

    如下是map2的输出结果

Key2

Value2

Hello

1

Hadoop

1

GoodBye

1

Hadoop

1

3 combine输出

    Combiner类实现将相同key的值合并起来,它也是一个Reducer的实现。

    如下是combine1的输出

Key2

Value2

Hello

1

World

2

Bye

1

    如下是combine2的输出

Key2

Value2

Hello

1

Hadoop

2

GoodBye

1

4 reduce输出

    Reducer类实现将相同key的值合并起来。

    如下是reduce的输出

  • 3
    点赞
  • 58
    收藏
    觉得还不错? 一键收藏
  • 9
    评论
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值