mapreduce编程(二)- 大象书中求每一年的最高温度

本文介绍了如何使用Hadoop MapReduce解决从数据中找出每年最高气温的问题。通过自定义Key类、Partitioner、Comparator和GroupingComparator,确保同一年的数据被分到同一个Reducer,并按年份升序、气温降序排序,最终只保留每个年份的最高气温。
摘要由CSDN通过智能技术生成

书上的例子是为了取出一年当中气温最高的值,那么将年份和气温做了一个复合的key. 

1 通过设置了partitioner来进行分区。因为分区是按照年份来进行,所以同年的数据就可以分区到一个reducer中。

2 自定义key比较器,按照年份升序,温度值降序。这样map输出的所有kv对就是按照年份升序,温度值降序排列的。

3 自定义分组比较器,所有同一年的数据属于同一个组,那么在reduce输出的时候,只需要取第一个value就能达到输出一年最高气温的目的。 

代码:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值