小小小白太难了,今天写一个简单的50Hz的函数遇到了一个情况,让我更加理解了采样点数多少是什么影响
结论:采样点数越多,采集到的数据越真实
现象:
采10个点
x = 0:0.1:1;%10个取样点
y_l = 0.1*sin(20*pi*x) ;%低频信号
y1 = 0.1*sin(20*pi*x) ; % f=10Hz
y2 = 0.1*sin(40*pi*x) ; % f=20Hz
y3 = 0.1*sin(100*pi*x) ;% f=50Hz
figure(1);
subplot(3,1,1);
plot(x,y1);
subplot(3,1,2);
plot(x,y2);
subplot(3,1,3);
plot(x,y3);
结果啥也不是!!!
采样点取100,
x = 0:0.01:1;%100个取样点
y_l = 0.1*sin(20*pi*x) ;%低频信号
y1 = 0.1*sin(20*pi*x) ; % f=10Hz
y2 = 0.1*sin(40*pi*x) ; % f=20Hz
y3 = 0.1*sin(100*pi*x) ;% f=50Hz
figure(1);
subplot(3,1,1);
plot(x,y1);
subplot(3,1,2);
plot(x,y2);
subplot(3,1,3);
plot(x,y3);
结果显示,低频的显示的还可以,频率稍微大一点的信号就不行了,搞得我很懵逼,还以为代码写错了
取1000个采样点
x = 0:0.001:1;%1000个取样点
y_l = 0.1*sin(20*pi*x) ;%低频信号
y1 = 0.1*sin(20*pi*x) ; % f=10Hz
y2 = 0.1*sin(40*pi*x) ; % f=20Hz
y3 = 0.1*sin(100*pi*x) ;% f=50Hz
figure(1);
subplot(3,1,1);
plot(x,y1);
subplot(3,1,2);
plot(x,y2);
subplot(3,1,3);
plot(x,y3);
可以发现采样1000个点的信号波形显示的就非常好了,看来以后都1000以上,越大的信号采样频率越大,怪不得资源消耗也就越多呢
小问题解决了,气都顺了
以后写这种多少频率的信号,写成下边这种形式,直接明了
y1 = 0.1*sin(2*pi*10*x) ; % f=10Hz
y2 = 0.1*sin(2*pi*20*x) ; % f=20Hz
y3 = 0.1*sin(2*pi*50*x) ;% f=50Hz