对数的换底公式的推导

复习高中数学的时候,由于教材没有告知对数公式的推导,所以自己推导了一遍,贡献给大家!对数推导公式

  • 10
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
Hermite公式是关于Hermite多项式的一个重要结果,它用于计算Hermite多项式的导数的值。 Hermite多项式是以法国数学家Charles Hermite的名字命名的,它是一类满足Hermite微分方程的特殊函数。它们在概率论、量子力学和统计力学等领域具有重要应用。 我们考虑Hermite多项式的定义: Hn(x) = (-1)^n * e^(x^2) * (d^n/dx^n) (e^(-x^2)) 其中,n为非负整数,e表示自然对数的底。我们要推导的是Hermite公式,用于计算Hermite多项式的导数。 首先,我们利用Leibniz法则对上述定义中的指数函数和导数进行展开: (d^n/dx^n) (e^(-x^2)) = ∑(k=0到n) C(n, k) * (-1)^(n-k) * e^(-x^2) * (d^k/dx^k) (x^2)^((n-k)/2) 其中,C(n, k)表示组合数。 接下来,我们将前面的展开式代入Hermite多项式的定义中,可以得到: Hn(x) = (-1)^n * e^(x^2) * (∑(k=0到n) C(n, k) * (-1)^(n-k) * e^(-x^2) * (d^k/dx^k) (x^2)^((n-k)/2)) 然后,我们进行一些简化。首先,前面的(-1)^n与∑中的每一项中的(-1)^(n-k)相乘,可以得到1,因此可以去掉。其次,合并底数不同的指数项,可以得到: Hn(x) = ∑(k=0到n) C(n, k) * (d^k/dx^k) (e^(-x^2) * x^(n-k)) 最后,我们可以用简化后的公式来计算Hermite多项式的导数的值。这个公式描述了Hermite多项式的导数与e^(-x^2) * x^{n-k}的导数之间的关系,通过计算多项式的每个导数项的系数,我们可以得到Hermite多项式的导数的值。 Hermite公式推导及应用有助于我们更好地理解Hermite多项式及其在数学和物理学中的重要性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值