抽象代数精解【4】

半群

  • 令 X 是非空集合,以 S X 表示 X 所有可逆变换 ( 即: X 到 X 的一一对应 ) 的集合,则 S X 对变换的乘法构成群, i d X 为 左幺元 , f − 1 为 f 的左逆元, S X 称为 X 的全变换群。 令X是非空集合,以S_X表示X所有可逆变换(即:X到X的一一对应)的集合,则S_X对变换的乘法构成群,id_X为 \\左幺元,f^{-1}为f的左逆元,S_X称为X的全变换群。 X是非空集合,以SX表示X所有可逆变换(即:XX的一一对应)的集合,则SX对变换的乘法构成群,idX左幺元,f1f的左逆元,SX称为X的全变换群。
  • 令M(X)是非空集X的所有变换(X到Y的映射)的集合,则对于变换的乘法,M(X)是幺半群,幺元是 i d x ( 就是恒等变换 ) , ∣ X ∣ ≥ 2 时, M ( X ) 不是可交换的 id_x(就是恒等变换),|X| \ge 2时,M(X)不是可交换的 idx(就是恒等变换),X2时,M(X)不是可交换的
  • ∣ x ∣ = n < + ∞ ,此时 S X 记为 S n , 称为 n 个文字的对称群或置换群,每个元素称为置换。 |x|=n \lt +\infty,此时S_X记为S_n,称为n个文字的对称群或置换群,每个元素称为置换。 x=n<+,此时SX记为Sn,称为n个文字的对称群或置换群,每个元素称为置换。
  • 数域P对乘法只能构成幺半群,有幺元(单位元)1,但是没有逆元,因为0没有逆元,所以非零元素对乘法可构成群。

  • 群 G 中所含有的元素个数 ∣ G ∣ 称为 G 的阶,如果 ∣ G ∣ 有限, 称 G 为有限群,若 ∣ G ∣ 无限,称 G 为无限群。 群G中所含有的元素个数|G|称为G的阶,如果|G|有限,\\称G为有限群,若|G|无限,称G为无限群。 G中所含有的元素个数G称为G的阶,如果G有限,G为有限群,若G无限,称G为无限群。
  • 设 a 为群 G 中的元素, ∀ k ∈ N , a k ≠ 1 , 此时称 a 的阶为无穷。 设a为群G中的元素,\forall k \in N,a^k\ne 1,此时称a的阶为无穷。 a为群G中的元素,kN,ak=1,此时称a的阶为无穷。
    若 ∃ k ∈ N ,使得 a k = 1 ,称 m i n { k ∣ k ∈ N , a k = 1 } 为 a 的阶。 若\exists k \in N,使得a^k=1,称min\{k|k \in N,a^k=1\}为a的阶。 kN,使得ak=1,称min{kkN,ak=1}a的阶。
  1. 这里的1是单位元,不一定是数字1,所以可写作 a k = e a^k=e ak=e
  2. 元素的阶是群论中的一个概念,用于描述群中元素的性质。以下是对元素阶的详细解释:

下面内容由文心一言自动生成
定义

设G是一个群,e是G的单位元,a是G的一个元素。如果存在正整数m,使得 a m = e a^m = e am=e(其中 a m a^m am表示a的m次幂,即a自乘m次),则称a的阶为m,记为 o r d ( a ) = m ord(a) = m ord(a)=m。如果这样的m不存在,即对于任意正整数n,均有 a n ≠ e a^n \neq e an=e,则称a的阶为无限。

性质

  1. 单位元的阶:在任何一个群中,单位元的阶总是1。
  2. 元素阶的有限性:若a是群G的m阶元素,则对于任意整数i,有 a i = e a^i = e ai=e当且仅当 i = 0 m o d    m i = 0 \mod m i=0modm。同时,若存在整数i和j( i ≠ j i \neq j i=j),使得 a i = a j a^i = a^j ai=aj,则必有 a i − j = e a^{i-j} = e aij=e,从而 i − j i-j ij是m的倍数,即存在正整数n,使得 a n = e a^n = e an=e
  3. 元素阶与群阶的关系:在有限群中,任何一个元素的阶都是群阶数的因子。即,如果G是一个有限群,且 ∣ G ∣ = n |G| = n G=n(n表示G的元素个数),那么对于G中的任意元素a,如果 o r d ( a ) = m ord(a) = m ord(a)=m,则m必能整除n。

示例

  1. 在整数加群Z中:除零元(即0)外,每个元素都是无限阶的。因为对于任意非零整数a和任意正整数n,都有 n a ≠ 0 na \neq 0 na=0
  2. 在模n剩余类加群Zn中:元素的阶与n和该元素在Zn中的表示有关。例如,在Z6中,元素1、5的阶为6(因为 1 6 = 5 6 = 1 m o d    6 1^6 = 5^6 = 1 \mod 6 16=56=1mod6),元素2、4的阶为3(因为 2 3 = 4 3 = 1 m o d    6 2^3 = 4^3 = 1 \mod 6 23=43=1mod6),元素3的阶为2(因为 3 2 = 1 m o d    6 3^2 = 1 \mod 6 32=1mod6),而0(即单位元)的阶为1。

应用

元素的阶在群论中有着广泛的应用,特别是在研究群的结构和性质时。通过元素的阶,可以判断群是否为循环群、确定群的阶数、分析群的子群结构等。此外,元素的阶还与群的其他重要概念如中心、自同构群等密切相关。

综上所述,元素的阶是群论中一个重要的概念,它揭示了群中元素的周期性和群的内部结构特征。

  1. a 的阶为无穷,当且仅当 m ≠ n 时, a m ≠ a n a的阶为无穷,当且仅当m \ne n时,a^m \ne a^n a的阶为无穷,当且仅当m=n时,am=an
  2. a 的阶为 d , 则 a m = a n i f f m ≡ n ( m o d d ) a的阶为d,则a^m=a^n\quad iff \quad m\equiv n\quad (mod\quad d) a的阶为d,am=aniffmn(modd)
  3. a 与 a − 1 的阶相同 a与a^{-1}的阶相同 aa1的阶相同

子群与商群

  • A 、 B 是群 G 的两个子集,约定 A B = { a b ∣ a ∈ A , b ∈ B } A、B是群G的两个子集,约定AB=\{ab|a \in A,b \in B\} AB是群G的两个子集,约定AB={abaA,bB}
    A − 1 = { a − 1 ∣ a ∈ A } A^{-1}=\{a^{-1}|a \in A\} A1={a1aA}
    A 为单点集 { a } 时,记 A B = a B , B A = B a A为单点集\{a\}时,记AB=aB,BA=Ba A为单点集{a}时,记AB=aBBA=Ba
    这一理论对半群和幺半群同样有效。

下面内容由文心一言自动生成
半群和幺半群都有子群的概念,但关于商群的概念需要更具体的条件

半群

  • 定义:半群是一个二元运算的代数系统。具体来说,一个非空集合S连同定义在它上面的一个满足结合律的二元运算“·”的代数系统(S,·)称为一个半群。半群是最简单、最自然的一类代数系统。
  • 子群:对于半群而言,虽然通常使用“子半群”这一术语来描述其子结构,但理论上可以类比群中的子群概念。子半群是与群的子群相平行的概念,即如果S是一个半群,U是S的一个非空子集,且对于U中的任意元素u、v,都有uv∈U,则称U是S的子半群。
  • 商群:在半群的上下文中,通常不直接讨论商群。商群的概念主要存在于群的上下文中,并且要求子群具有特定的性质(如正规子群)。然而,在某些特定的代数结构或更一般的范畴论中,可能会定义类似于商群的概念,但这需要更复杂的数学背景和特定的条件。

幺半群

  • 定义:幺半群是一个存在单位元(幺元)的半群。即,考虑定义了二元运算(注意这里蕴含了S对运算封闭)的非空集合S,若满足存在单位元e,使得对于S中的任意元素a,都有ea=a且ae=a,则称S为幺半群。
  • 子群与子幺半群:在幺半群的上下文中,同样可以定义子幺半群。如果M是幺半群S的一个子集,且M包含S的单位元e,且对于M中的任意元素x、y,都有xy∈M,则称M是S的子幺半群。注意,虽然这里使用了“子群”的类似术语,但在非群的代数结构中,更常见的术语是“子半群”或“子幺半群”。
  • 商群:与半群类似,幺半群本身并不直接具有商群的概念。然而,如果幺半群中的某个子幺半群满足特定的条件(如某种形式的正规性),并且可以在某种更广泛的代数结构或范畴论框架下定义商对象,则可能可以构造出类似于商群的结构。但在标准的代数理论中,这通常不是幺半群直接讨论的内容。

综上所述,半群和幺半群都有子群(或更准确地说是子半群、子幺半群)的概念,但关于商群的概念则需要更具体的条件和更广泛的数学背景。在标准的代数理论中,商群主要是群论中的概念。

  • 群的非空子集对群的运算构仍然构成一个群,称之为子群。
  1. 平凡子群:{G},{e}
  2. 非平凡子群:其它群。

下面内容由文心一言自动生成
子群的等价条件主要涉及到群G的非空子集H在何种情况下可以视为G的子群。以下是一些关键的等价条件:

封闭性与逆元性

  • 封闭性 对于任意 a , b ∈ H ,有 a ⋅ b ∈ H (这里的“ ⋅ ”表示群 G 中的乘法运算) 对于任意a, b ∈ H,有a·b ∈ H(这里的“·”表示群G中的乘法运算) 对于任意a,bH,有abH(这里的表示群G中的乘法运算)
  • 逆元性 对于任意 a ∈ H ,存在 a 的逆元 a − 1 ∈ H (即,在群 G 中, a 与 a − 1 的乘积等于群的单位元 e ) 对于任意a ∈ H,存在a的逆元a^{-1} ∈ H(即,在群G中,a与a^{-1}的乘积等于群的单位元e) 对于任意aH,存在a的逆元a1H(即,在群G中,aa1的乘积等于群的单位元e)

这两个条件可以组合成更简洁的形式: 对于任意 a , b ∈ H ,有 a ⋅ b − 1 ∈ H . 这是因为 b − 1 也是 H 中的元素(逆元性),而 a 与 b − 1 的乘积则由于封闭性必然在 H 中 对于任意a, b ∈ H,有a·b^{-1} ∈ H.\\这是因为b^{-1}也是H中的元素(逆元性),而a与b{-1}的乘积则由于封闭性必然在H中 对于任意a,bH,有ab1H.这是因为b1也是H中的元素(逆元性),而ab1的乘积则由于封闭性必然在H

代数结构完整性

  • 子群也是群:若H是G的非空子集,并且关于G中的乘法运算构成一个群,则H是G的子群。这意味着H不仅满足封闭性和逆元性,还满足结合律(由G的结合律继承),且H中有单位元(与G的单位元相同)。

同态映射

  • 存在内含同态:H为群G的子群当且仅当H为G的子集且存在一个由H映射到G的内含同态(即对每个a ∈ H,i(a) = a)。这从另一个角度说明了H作为G的子集,其元素在G中的运算行为与在H中的运算行为是一致的。

平凡子群

  • 平凡子群的存在性:任何群G都有两个平凡的子群:G本身和由G的单位元e构成的集合{e}。这两个子群分别代表了G的最大子群和最小非空子群(不考虑空集作为子群的情况)。

交集与生成子群

  • 子群的交集:若A和B是群G的子群,则A和B的交集A ∩ B也是G的子群。这说明了子群在交集运算下是封闭的。
  • 生成子群:对于群G的非空子集S,G中所有包含S的子群的交称为由S生成的子群,
    记作 < S > <S> <S>。这也是一个子群,因为它满足封闭性和逆元性等条件。

综上所述,子群的等价条件主要涉及到封闭性、逆元性、代数结构完整性、同态映射以及平凡子群和生成子群等概念。这些条件共同刻画了子群作为群的一个重要组成部分的基本性质。

  • H是G的非空子集则
    H 是 G 的子群 ⇔ H H − 1 = H ⇔ H H = H , H − 1 = H H是G的子群\Leftrightarrow HH^{-1}=H\Leftrightarrow HH=H,H^{-1}=H HG的子群HH1=HHH=H,H1=H
  • n 个不定元 x 1 , x 2 , . . . x n 的多项式 A = ∏ 1 ≤ i ≤ j ≤ n ( x i − x j ) ∈ C [ x 1 , x 2 , . . . , x n ] n个不定元x_1,x_2,...x_n的多项式A=\prod_{1\le i\le j \le n}(x_i-x_j) \in C[x_1,x_2,...,x_n] n个不定元x1,x2,...xn的多项式A=1ijn(xixj)C[x1,x2,...,xn]
    对于 σ ∈ S n , A σ = ∏ 1 ≤ i ≤ j ≤ n ( x σ ( i ) − x σ ( j ) ) 对于\sigma \in S_n,A_\sigma=\prod_{1\le i\le j \le n} (x_{\sigma (i)}-x_{\sigma (j)}) 对于σSn,Aσ=1ijn(xσ(i)xσ(j))
    A σ = A , σ 为偶置换,若 A σ = − A , σ 为奇置换。 A_\sigma=A,\sigma为偶置换,若A_\sigma=-A,\sigma为奇置换。 Aσ=A,σ为偶置换,若Aσ=A,σ为奇置换。

下面内容由文心一言自动生成
在抽象代数中,对换(Transposition)是一个重要的概念,特别是在置换群(Permutation Group)和对称群(Symmetric Group)的研究中。以下是对对换的详细解释:

定义

在置换的表示中,一个长度为2的轮换被称为对换。具体来说,如果一个置换只涉及两个元素的交换,而保持其他元素不变,那么这个置换就是对换。例如,在集合{1,
2, 3, …, n}上的置换群中,置换(1 2)就是一个对换,因为它只交换了1和2的位置,而3, 4, …, n的位置保持不变。

性质

  1. 乘积的奇偶性:任何一个置换都可以表示为对换的乘积,而且所用对换个数的奇偶性是唯一的。如果一个置换可以表示为偶数个对换的乘积,则称为偶置换(Even
    Permutation);如果可以表示为奇数个对换的乘积,则称为奇置换(Odd Permutation)。

  2. 交换律:不相交的对换之间满足交换律,即如果两个对换不涉及相同的元素,那么它们的乘积可以交换顺序而不改变结果。

  3. 对称群中的子群:在对称群 S n S_n Sn中,所有偶置换在映射的乘法下也构成一个群,这个群被称为交错群(Alternating Group),记作 A n A_n An。交错群 A n A_n An是对称群 S n S_n Sn的一个重要的子群,其阶为 n ! 2 \frac{n!}{2} 2n!

应用

对换在抽象代数中有着广泛的应用,特别是在群论和组合数学中。它们被用来研究置换群的性质、结构以及与其他数学结构的关系。此外,对换还在密码学、计算机科学等领域中发挥着重要作用,例如在加密算法的设计和实现中,对换的概念被用来构造安全的置换操作。

示例

考虑集合{1, 2, 3}上的置换群 S 3 S_3 S3,其中的置换(1 2)就是一个对换,因为它只交换了1和2的位置。同样地,(1 3)和(2
3)也是对换。这些对换可以用来生成 S 3 S_3 S3中的其他置换,例如(1 2)(1 3) = (1 3
2),这里我们按照从右往左的顺序进行置换的乘法。

综上所述,对换是抽象代数中一个基本而重要的概念,它在置换群、对称群以及更广泛的数学领域中都有着广泛的应用。
偶置换、奇置换与交错群是数学中特别是群论和置换群理论中的重要概念。下面分别解释这三个概念:

一、偶置换与奇置换

定义

  • 偶置换(Even Permutation):一个置换如果可以表示成偶数个对换的乘积,则称为偶置换。
  • 奇置换(Odd Permutation):一个置换如果可以表示成奇数个对换的乘积,则称为奇置换。

性质

  • 偶置换和奇置换的乘积性质:两个偶置换的乘积是偶置换,两个奇置换的乘积也是偶置换,而一个偶置换和一个奇置换的乘积是奇置换。
  • 唯一性:一个置换可以表示成对换的乘积的方式不是唯一的,但对换个数的奇偶性是唯一的,即一个置换要么是偶置换,要么是奇置换,二者必居其一。

二、交错群(Alternating Group)

定义

  • 交错群是有限集合上所有偶置换组成的群。记作 A n 或 A l t ( n ) A_n或Alt(n) AnAlt(n),其中n表示集合中元素的个数。

性质

  • 交错群是有限集合上对称群(Symmetric Group)的一个正规子群。对称群包含集合上所有可能的置换,而交错群则只包含其中的偶置换。
  • 交错群在有限群理论中具有重要意义,特别是在n大于等于5时,交错群 A n A_n An是一个单群,即除了平凡子群和自身外没有其他子群。

三、偶置换、奇置换与交错群的关系

  • 偶置换和奇置换的划分是基于它们可以表示成对换的乘积的个数的奇偶性。这种划分在交错群的定义中起到了关键作用,因为交错群正是由所有偶置换组成的群。
  • 交错群作为对称群的一个子群,其元素(即偶置换)在群运算下保持封闭性,满足群的所有性质。

综上所述,偶置换和奇置换是置换的两种重要分类,而交错群则是基于偶置换构建的具有特殊性质的群。这些概念在群论、置换群理论以及更广泛的数学领域中都有着重要的应用。
对称群 S n S_n Sn(也称为 n n n次对称群或 n n n阶置换群)
是一个在集合 { 1 , 2 , … , n } \{1, 2, \ldots, n\} {1,2,,n}上的所有可能置换组成的群。在数学中,群是一种代数结构,由一组元素以及这些元素之间的二元运算组成,满足封闭性、结合律、存在单位元和存在逆元的性质。

在对称群 S n S_n Sn中,元素是集合 { 1 , 2 , … , n } \{1, 2, \ldots, n\} {1,2,,n}的置换,即重新排列这个集合中的元素的方式。每个置换都可以表示为一个双射函数(即一一对应且每个元素都有唯一逆元素的函数),它将集合中的每个元素映射到集合中的另一个元素,且没有元素被遗漏或重复映射。

S n S_n Sn中的运算是置换的复合,即给定两个置换 σ \sigma σ τ \tau τ,它们的复合 σ ∘ τ \sigma \circ \tau στ(或简单地写作 σ τ \sigma \tau στ)是先将 τ \tau τ应用于集合,然后将 σ \sigma σ应用于结果的置换。这个复合运算满足群的四个基本性质:

  1. 封闭性:对于任意两个置换 σ , τ ∈ S n \sigma, \tau \in S_n σ,τSn,它们的复合 σ τ \sigma \tau στ也是 S n S_n Sn中的一个置换。
  2. 结合律:对于任意三个置换 σ , τ , ρ ∈ S n \sigma, \tau, \rho \in S_n σ,τ,ρSn,有 ( σ τ ) ρ = σ ( τ ρ ) (\sigma \tau) \rho = \sigma (\tau \rho) (στ)ρ=σ(τρ)
  3. 单位元:存在恒等置换 e e e(即每个元素都映射到自己的置换),使得对于任意置换 σ ∈ S n \sigma \in S_n σSn,都有 e σ = σ e = σ e \sigma = \sigma e = \sigma eσ=σe=σ
  4. 逆元:对于任意置换 σ ∈ S n \sigma \in S_n σSn,都存在一个逆置换 σ − 1 \sigma^{-1} σ1,使得 σ σ − 1 = σ − 1 σ = e \sigma \sigma^{-1} = \sigma^{-1} \sigma = e σσ1=σ1σ=e

S n S_n Sn的阶(即元素的数量)是 n ! n! n! n n n的阶乘),因为集合 { 1 , 2 , … , n } \{1, 2, \ldots, n\} {1,2,,n}的每个可能排列都是 S n S_n Sn中的一个元素。

在对称群 S n S_n Sn中,还有两个重要的子集:偶置换集和奇置换集。根据一个置换可以表示为对换个数的奇偶性,我们可以将置换分为偶置换和奇置换。这两个子集在 S n S_n Sn中都是子群,但它们的并集不是子群(因为奇置换和偶置换的复合是奇置换,除非一个是恒等置换)。特别地,偶置换集在 S n S_n Sn中形成了一个名为交错群 A n A_n An的子群,其阶为 n ! 2 \frac{n!}{2} 2n!
对称多项式
k k k 是一个正整数, x 1 , x 2 , … , x k x_1, x_2, \ldots, x_k x1,x2,,xk k k k 个变量。一个关于 x 1 , x 2 , … , x k x_1, x_2, \ldots, x_k x1,x2,,xk 的多项式 f ( x 1 , x 2 , … , x k ) f(x_1, x_2, \ldots, x_k) f(x1,x2,,xk) 被称为对称多项式,如果对于 x 1 , x 2 , … , x k x_1, x_2, \ldots, x_k x1,x2,,xk 的任意置换 σ \sigma σ,都有

f ( x 1 , x 2 , … , x k ) = f ( x σ ( 1 ) , x σ ( 2 ) , … , x σ ( k ) ) f(x_1, x_2, \ldots, x_k) = f(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(k)}) f(x1,x2,,xk)=f(xσ(1),xσ(2),,xσ(k))

其中 σ \sigma σ { 1 , 2 , … , k } \{1, 2, \ldots, k\} {1,2,,k} 的一个置换。

基本性质

  1. 对称性:对称多项式的最基本性质就是其对称性,即任意交换两个变量的位置,多项式的值不变。
  2. 运算封闭性:两个对称多项式的和、差、积仍然是对称多项式。但需要注意的是,对称多项式的因式不一定是对称的。
  3. 初等对称多项式 在多元多项式环 K [ x 1 , x 2 , . . . , x n ] 中, 含有项 x 1 ⋯ x k ( k = 1 , 2 , . . . , n )的项数最小的 n 元对称多项式称为初等对称多项式。 常见的初等对称多项式有 σ 1 = x 1 + x 2 + . . . + x n , σ 2 = ∑ ( x i ∗ x j ) (其中 i < j ),以此类推 在多元多项式环K[x1, x2, ..., xn]中,\\含有项x1⋯xk(k=1, 2, ..., n)的项数最小的n元对称多项式称为初等对称多项式。\\常见的初等对称多项式有σ1 = x1 + x2 + ... + xn,σ2 = ∑(xi* xj)(其中i < j),以此类推 在多元多项式环K[x1,x2,...,xn]中,含有项x1xkk=1,2,...,n)的项数最小的n元对称多项式称为初等对称多项式。常见的初等对称多项式有σ1=x1+x2+...+xnσ2=(xixj)(其中i<j),以此类推

基本定理

对称多项式基本定理指出,对于任意一个 n 元对称多项式 f ,都存在一个 n 元多项式 g , 使得 f 可以表示为 g ( σ 1 , σ 2 , . . . , σ n ) 的形式,其中 σ 1 , σ 2 , . . . , σ n 是初等对称多项式。 这个定理说明了对称多项式与初等对称多项式之间的紧密联系,也为我们研究对称多项式提供了有力的工具。 对称多项式基本定理指出,对于任意一个n元对称多项式f,都存在一个n元多项式g,\\使得f可以表示为g(σ1, σ2, ..., σn)的形式,其中σ1, σ2, ..., σn是初等对称多项式。\\这个定理说明了对称多项式与初等对称多项式之间的紧密联系,也为我们研究对称多项式提供了有力的工具。 对称多项式基本定理指出,对于任意一个n元对称多项式f,都存在一个n元多项式g使得f可以表示为g(σ1,σ2,...,σn)的形式,其中σ1,σ2,...,σn是初等对称多项式。这个定理说明了对称多项式与初等对称多项式之间的紧密联系,也为我们研究对称多项式提供了有力的工具。

换句话说,如果我们将多项式中的变量按照任意顺序重新排列,得到的多项式与原多项式相同。 例子

  1. x 1 + x 2 + x 3 x_1 + x_2 + x_3 x1+x2+x3 是关于 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 的对称多项式。
  2. x 1 2 + x 2 2 + x 3 2 x_1^2 + x_2^2 + x_3^2 x12+x22+x32 也是对称多项式,因为它在 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 的任意置换下保持不变。
  3. x 1 x 2 + x 2 x 3 + x 3 x 1 x_1x_2 + x_2x_3 + x_3x_1 x1x2+x2x3+x3x1 同样是对称多项式。
    性质
  • 对称多项式的和、差、积仍然是对称多项式。
  • 任何对称多项式都可以表示为基本对称多项式的多项式函数。基本对称多项式包括:
    • s 1 = x 1 + x 2 + ⋯ + x k s_1 = x_1 + x_2 + \cdots + x_k s1=x1+x2++xk
    • s 2 = x 1 x 2 + x 1 x 3 + ⋯ + x k − 1 x k s_2 = x_1x_2 + x_1x_3 + \cdots + x_{k-1}x_k s2=x1x2+x1x3++xk1xk
    • ⋮ \vdots
    • s k = x 1 x 2 ⋯ x k s_k = x_1x_2\cdots x_k sk=x1x2xk 应用 对称多项式在数学和物理中有广泛的应用,特别是在代数几何、群论、表示论以及量子物理等领域。它们也常用于解决多项式方程的问题,特别是在处理具有对称性的多项式方程组时。

参考文献

  1. 《抽象代数基础》
  2. 文心一言
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值