使用PGVecto.rs进行向量数据库操作

使用PGVecto.rs操作Postgres向量数据库

在这篇文章中,我们将展示如何使用PGVecto.rs功能来操作Postgres向量数据库。我们将加载文档、生成嵌入、并将数据存储在Postgres数据库中。我们还会进行一些常见的相似度搜索操作。

技术背景介绍

PGVecto.rs是一个为Postgres数据库增加向量搜索能力的工具。它允许你将文档嵌入存储在Postgres数据库中,并使用各种向量相似性度量来进行高效搜索。本文将介绍如何使用PGVecto.rs加载文档,生成和存储嵌入,并进行相似度搜索。

核心原理解析

PGVecto.rs利用Postgres的扩展功能来处理向量数据。通过将文档嵌入存储在数据库中,可以组合数据库的强大查询能力和高效的向量相似性搜索。

代码实现演示

安装必要的库

%pip install "pgvecto_rs[sdk]" langchain-community

导入所需模块

from typing import List
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.fake import FakeEmbeddings
from langchain_community.vectorstores.pgvecto_rs import PGVecto_rs
from langchain_core.documents import Document
from langchain_text_splitters import CharacterTextSplitter

加载和分割文档

loader = TextLoader("path/to/state_of_the_union.txt")
documents = loader.load(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值