在这篇文章中,我们将展示如何使用PGVecto.rs功能来操作Postgres向量数据库。我们将加载文档、生成嵌入、并将数据存储在Postgres数据库中。我们还会进行一些常见的相似度搜索操作。
技术背景介绍
PGVecto.rs是一个为Postgres数据库增加向量搜索能力的工具。它允许你将文档嵌入存储在Postgres数据库中,并使用各种向量相似性度量来进行高效搜索。本文将介绍如何使用PGVecto.rs加载文档,生成和存储嵌入,并进行相似度搜索。
核心原理解析
PGVecto.rs利用Postgres的扩展功能来处理向量数据。通过将文档嵌入存储在数据库中,可以组合数据库的强大查询能力和高效的向量相似性搜索。
代码实现演示
安装必要的库
%pip install "pgvecto_rs[sdk]" langchain-community
导入所需模块
from typing import List
from langchain_community.document_loaders import TextLoader
from langchain_community.embeddings.fake import FakeEmbeddings
from langchain_community.vectorstores.pgvecto_rs import PGVecto_rs
from langchain_core.documents import Document
from langchain_text_splitters import CharacterTextSplitter
加载和分割文档
loader = TextLoader("path/to/state_of_the_union.txt")
documents = loader.load(
使用PGVecto.rs操作Postgres向量数据库

最低0.47元/天 解锁文章

981

被折叠的 条评论
为什么被折叠?



