对应估计 Korrespondenschätzung
相同的图像同样的像素点,在旋转后它们differenz 就不为0了 解决办法用梯度gradienten
梯度的计算 x方向
计算是1号位 50*-1(9号位)+······
梯度y方向计算
可以得到像素再x和y方向上的梯度,然后计算出偏转角 Φ =arctan(▽y/▽x)
旋转矩阵
坐标点比如说-1,1就是7号位的点乘上 旋转矩阵就是旋转后点的坐标
旋转后点 还是要在整数像素位置上 所以有两种方法 一种是选择最靠近的点给整数像素位赋值,第二种最近的4个点平均
一个线性等式系统存在多少个解
情况1 矩阵A m行n列 当m=n 然后秩r=m时 就是满秩时 有一个解
r<m时 也是就是不满秩 有0解或者无数解比如 第二排和第三排成比例 等式右边的b也成比例 ,此时无数个解,若b不成比例 可能是无解的
情况2 当m>n时
当r<n 或是r<m 时 就是无数或者0解
情况3 当m<n
r =m时 3个未知数 却只有2个式子 又是满秩 无穷解
四个基本子空间是与矩阵相关联的四个子空间。它们的定义如下:
- 列空间(column space): 列空间由矩阵的列向量的所有线性组合组成。它表示由矩阵的列向量所张成的空间。(就是把矩阵的一列一列的列向量拿出来排列组合 空间是r秩)
- 行空间(row space): 行空间由矩阵的行向量的所有线性组合组成。它表示由矩阵的行向量所张成的空间。
- 零空间(null space): 零空间由齐次线性方程组 Ax = 0 的解组成,其中 A 是给定的矩阵。零空间包含了被矩阵映射到零向量的所有向量。
- 左零空间(left null space): 左零空间由齐次线性方程组 yA = 0 的解组成,其中 A 是给定的矩阵。左零空间包含了通过矩阵转置映射到零向量的所有向量。
SDV分解
四个基本子空间与矩阵的奇异值分解(SVD)的关联如下:
给定一个维度为 m x n 的矩阵 A,它的奇异值分解(SVD)可以表示为:
A = U * S * V'
其中 U 是一个 m x m 的正交矩阵,S 是一个对角矩阵,其主对角线上的元素是按照非负的奇异值 s1, s2, ..., s_min(m,n) 降序排列的,V 是一个 n x n 的正交矩阵。奇异值是非负的。
与奇异值分解相关的四个基本子空间如下:
- 列空间: 矩阵 U 的列向量,即 U 的前 r 列,其中 r 是 A 的秩,它们构成了 A 的列空间。这些列向量对应于对角矩阵 S 中非零奇异值所在的位置。
- 行空间: 矩阵 V 的行向量,即 V 的前 r 行,其中 r 是 A 的秩,它们构成了 A 的行空间。这些行向量对应于对角矩阵 S 中非零奇异值所在的位置。
- 零空间: 零空间对应于矩阵 V 中与零奇异值对应的列向量。这些列向量是齐次线性方程组 Ax = 0 的解,其中 A 是给定的矩阵。
- 左零空间: 左零空间对应于矩阵 U 中与零奇异值对应的列向量。这些列向量是齐次线性方程组 yA = 0 的解,其中 A 是给定的矩阵。
奇异值分解使我们能够高效地计算矩阵的四个基本子空间。通过使用正交矩阵 U 和 V,我们可以直接获取子空间的基向量。对角矩阵 S 包含奇异值的信息,这些奇异值表示子空间中向量的缩放因子。
正交矩阵和向量相乘 不改变向量的长度
正交矩阵QT*Q=I
向量的长度是根号下vt*v
进行欧几里得移动后RT 欧几里得距离不变
因为RT*R=I
旋转矩阵的条件RT*R=I det(R)=1
证明式子是不是线性的线性方程就是f(x+y)=f(x)+f(y) 所以f(2x)=2f(x) f(αx)= αf(x)
最终证明式子f(αx+βy)=αf(x)+βf(y)
Eigenwertszerlegung(Eigendecomposition)是一种用于对一个方阵进行分解的数学方法。它将一个方阵表示为其特征向量和特征值的形式。
给定一个方阵 A,Eigenwertszerlegung 的形式为:
A = V * D * V^(-1)
其中 V 是由 A 的特征向量构成的正交矩阵,D 是一个对角矩阵,对角线上的元素是 A 的特征值。
Eigenwertszerlegung的关键在于特征向量和特征值。特征向量是一个非零向量,在矩阵作用下仅被缩放而不改变方向。特征值是一个标量,表示对应特征向量的缩放因子。
利用 Eigenwertszerlegung,我们可以将方阵 A 分解为特征向量和特征值的组合。这种分解在很多数学和科学领域都有广泛的应用,例如在线性代数、数值计算、信号处理、机器学习等领域。
Eigenwertszerlegung有时可能并不适用于所有方阵。它要求方阵 A 具有足够数量的线性无关的特征向量,这也意味着 A 必须是可对角化的。如果方阵 A 不可对角化,或者没有足够数量的线性无关特征向量,那么我们将需要使用其他的矩阵分解方法,如奇异值分解(SVD)。
SVD 和E分解的连续
得出的结论 ATA 的特征值分解的V 就是svd(A)的 V ;AAT的的特征值分解的V 是svd(A)的U
essentielle Matrix. 中间的∑是对角线[a a 0]这种才行
解得t1 t2 Φ
首先是xT2EX1 =0的公式推导 E=T^*R,有两个性质 T^T=0 然后x2TT^*x2=0
l是对极极线 例如 l2=e2 x x2 l1=e1 x x1
要证明l2 和E*x1 有比例关系
首先λ2x2=*λ1Rx1+T x2=λ1/λ2*Rx1+1/λ2 T λ1/λ2 可以被忽略 但是1/λ2 不可以
8点算法 弊端只能用8点来算 9个点会得到全是0的E解 所以rank只能等于8 而等于8它又解不出来 只能用最小值来代替等式
一对特征点([x1 y1 z1],[x2 y2 z2]) 如果圈乘 kronecker 乘法可以得到R9 的矩阵
如果有n对特征点 并把上面的R9矩阵转置组合 可以得到N x 9的矩阵
为了实际情况 我们不会解方程 用的是 (插一句 为什么要8个点 是因为 上面归一化坐标的第九个系数是1)rank(A)=8
然后对A svd分解 得到的V的第9列重组得到G (R 3 X 3)再svd得到U∑V 把求和换成diag(1 , 1 ,0) 简单的
从svd(A)中得到的U∑ VT 可以拆成2种R 2种T 的组合 但只有1组是合理的
从E得到了RT后 把这4种组合的RT 都带到M中去
通过对M svd分解算出来λ 的矩阵 用的是VT 因为VT是特征向量吧 要所有的λ 都是正的的 矩阵的那一组 选出来
首先基础矩阵的公式推导 因为 x‘ =K*x x是相机坐标系在归一化平面上的坐标(x,y,1) x‘ 是像素坐标系上的点的坐标
所以基础矩阵是
公式推导 和E 是很像的 把E的 RT推导式 乘上K
F不能做3d重建 没有后续的话
平面外极方程 (估计摄像机的欧几里得运动与平面场景中的对应关系)
单应矩阵 一个图像在另一个视角下的投影矩阵
x2~Hx1 这里的x2 和x1 是相机坐标归一化平面上的点 在相机坐标下的点坐标
为什么只需要4个对应点 ,因为拥有2个线性不相关方程 8dof =4对点
公式推导 多看ubung
·····
3个原因 为什么棋盘适合作为相机的校准图像
1.planare Oberflache 平面表面
2.punkt gut lokalisierbar 点好定位
3.geometrie is bekannt 点之间的距离已知