ST表:
静态求解区间可重值(最大值、最小值)。不可修改数值。
预处理时间复杂度:
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)。
查询时间复杂度:
O
(
1
)
O(1)
O(1)。
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
const int N = 100010, M = 20;
int n, m, f[N][M];
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &f[i][0]);
for (int j = 1; j < M; j++)
for (int i = 1; i + (1 << j) - 1 <= n; i++)
f[i][j] = max(f[i][j-1], f[i + (1 << (j - 1))][j-1]);
for (int i = 0; i < m; i++) {
int l, r;
scanf("%d %d", &l, &r);
int s = log2(r - l + 1);
printf("%d\n", max(f[l][s], f[r - (1 << s) + 1][s]));
}
return 0;
}
分块(一种思想,不是算法):
分块的基本思想是:通过对原数据的适当划分,并在划分后的每一个块上预处理部分信息,从而较一般的暴力算法取得更优的时间复杂度。
分块是一种很灵活的思想,相较于树状数组和线段树,分块的优点是通用性更好,可以维护很多树状数组和线段树无法维护的信息。
当然,分块的缺点是渐进意义的复杂度,相较于线段树和树状数组不够好。
#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int N = 5e4 + 10;
int n, id[N], len;
long long a[N], b[N], s[N];
void add(int l, int r, long long x) {
int sid = id[l], eid = id[r];
if (sid == eid) {
for (int i = l; i <= r; i++) a[i] += x, s[sid] += x;
return;
}
for (int i = l; id[i] == sid; i++) a[i] += x, s[sid] += x;
for (int i = sid + 1; i < eid; i++) b[i] += x, s[i] += len * x;
for (int i = r; id[i] == eid; i--) a[i] += x, s[eid] += x;
}
long long query(int l, int r, long long p) {
int sid = id[l], eid = id[r];
long long ans = 0;
if (sid == eid) {
for (int i = l; i <= r; i++) ans = (ans + a[i] + b[sid]) % p;
return ans;
}
for (int i = l; id[i] == sid; i++) ans = (ans + a[i] + b[sid]) % p;
for (int i = sid + 1; i < eid; i++) ans = (ans + s[i]) % p;
for (int i = r; id[i] == eid; i--) ans = (ans + a[i] + b[eid]) % p;
return ans;
}
int main() {
scanf("%d", &n);
len = sqrt(n);
for (int i = 1; i <= n; i++) {
scanf("%lld", &a[i]);
id[i] = (i - 1) / len + 1;
s[id[i]] += a[i];
}
for (int i = 1; i <= n; i++) {
int op, l, r;
long long c;
scanf("%d %d %d %lld", &op, &l, &r, &c);
if (op == 0) add(l, r, c);
else printf("%lld\n", query(l, r, c + 1));
}
return 0;
}