ST表+分块思想

ST表:

静态求解区间可重值(最大值、最小值)。不可修改数值。
预处理时间复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
查询时间复杂度: O ( 1 ) O(1) O(1)

#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
const int N = 100010, M = 20;
int n, m, f[N][M];
int main() {
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%d", &f[i][0]);
    for (int j = 1; j < M; j++)
        for (int i = 1; i + (1 << j) - 1 <= n; i++)
            f[i][j] = max(f[i][j-1], f[i + (1 << (j - 1))][j-1]);
    for (int i = 0; i < m; i++) {
        int l, r;
        scanf("%d %d", &l, &r);
        int s = log2(r - l + 1);
        printf("%d\n", max(f[l][s], f[r - (1 << s) + 1][s]));
    }
    return 0;
}

分块(一种思想,不是算法):

分块的基本思想是:通过对原数据的适当划分,并在划分后的每一个块上预处理部分信息,从而较一般的暴力算法取得更优的时间复杂度。
分块是一种很灵活的思想,相较于树状数组和线段树,分块的优点是通用性更好,可以维护很多树状数组和线段树无法维护的信息。
当然,分块的缺点是渐进意义的复杂度,相较于线段树和树状数组不够好。

#include <iostream>
#include <cstdio>
#include <cmath>
using namespace std;
const int N = 5e4 + 10;
int n, id[N], len;
long long a[N], b[N], s[N];
void add(int l, int r, long long x) {
    int sid = id[l], eid = id[r];
    if (sid == eid) {
        for (int i = l; i <= r; i++) a[i] += x, s[sid] += x;
        return;
    }
    for (int i = l; id[i] == sid; i++) a[i] += x, s[sid] += x;
    for (int i = sid + 1; i < eid; i++) b[i] += x, s[i] += len * x;
    for (int i = r; id[i] == eid; i--) a[i] += x, s[eid] += x;
}
long long query(int l, int r, long long p) {
    int sid = id[l], eid = id[r];
    long long ans = 0;
    if (sid == eid) {
        for (int i = l; i <= r; i++) ans = (ans + a[i] + b[sid]) % p;
        return ans;
    }
    for (int i = l; id[i] == sid; i++) ans = (ans + a[i] + b[sid]) % p;
    for (int i = sid + 1; i < eid; i++) ans = (ans + s[i]) % p;
    for (int i = r; id[i] == eid; i--) ans = (ans + a[i] + b[eid]) % p;
    return ans;
}
int main() {
    scanf("%d", &n);
    len = sqrt(n);
    for (int i = 1; i <= n; i++) {
        scanf("%lld", &a[i]);
        id[i] = (i - 1) / len + 1;
        s[id[i]] += a[i];
    }
    for (int i = 1; i <= n; i++) {
        int op, l, r;
        long long c;
        scanf("%d %d %d %lld", &op, &l, &r, &c);
        if (op == 0) add(l, r, c);
        else printf("%lld\n", query(l, r, c + 1));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值