空洞卷积实现代码

经过几天的学习理论知识和实践,终于把unet跟空洞卷积结合了。
还没看过空洞卷积的请看下面链接
空洞卷积理论知识

代码

uent.py

import numpy as np
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras import backend as keras


def unet(pretrained_weights=None, input_size=(256, 256, 1)):
    inputs = Input(input_size)  # 初始化keras张量
    
    #第一层卷积
    #实际上从unet的结构来看每一次卷积的padding应该是valid,也就是每次卷积后图片尺寸减少2,
    #但在这里为了避免裁剪,方便拼接,把padding设成了same,即每次卷积不会改变图片的尺寸。
    conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
    # filters:输出的维度
    # kernel_size:卷积核的尺寸
    # activation:激活函数
    # padding:边缘填充,实际上在该实验中并没有严格按照unet网络结构进行卷积,same填充在卷积完毕之后图片大小并不会改变
    # kernel_initializer:kernel权值初始化
    conv1 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)#采用2*2的最大池化
    
    #第二层卷积
    #参数类似于第一层卷积,只是输出的通道数翻倍
    conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    
    #第三层卷积
    conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    
    #第四层卷积
    conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal',dilation_rate=2)(pool3)
    conv4 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal',dilation_rate=2)(conv4)
    drop4 = Dropout(0.5)(conv4)  # 每次训练时随机忽略50%的神经元,减少过拟合
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
    
    #第五层卷积
    conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal',dilation_rate=2)(pool4)
    conv5 = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal',dilation_rate=2)(conv5)
    drop5 = Dropout(0.5)(conv5)# 每次训练时随机忽略50%的神经元,减少过拟合
    
    #第一次反卷积
    up6 = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(drop5))  # 先上采样放大,在进行卷积操作,相当于转置卷积
    # merge6 = merge([drop4, up6], mode='concat', concat_axis=3)
    #将第四层卷积完毕并进行Dropout操作后的结果drop4与反卷积后的up6进行拼接
    merge6 = concatenate([drop4, up6], axis=3)  # (width,heigth,channels)拼接通道数
    conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)

    #第二次反卷积
    up7 = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(conv6))
    # merge7 = merge([conv3, up7], mode='concat', concat_axis=3)
    #将第三层卷积完毕后的结果conv3与反卷积后的up7进行拼接
    merge7 = concatenate([conv3, up7], axis=3)
    conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
    
    #第三次反卷积
    up8 = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(conv7))
    # merge8 = merge([conv2, up8], mode='concat', concat_axis=3)
    #将第二层卷积完毕后的结果conv2与反卷积后的up8进行拼接
    merge8 = concatenate([conv2, up8], axis=3)#拼接通道数
    conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
    
    
    #第四次反卷积
    up9 = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
        UpSampling2D(size=(2, 2))(conv8))
    # merge9 = merge([conv1, up9], mode='concat', concat_axis=3)
    #将第一层卷积完毕后的结果conv1与反卷积后的up9进行拼接
    merge9 = concatenate([conv1, up9], axis=3)#拼接通道数
    conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
    
    #进行一次卷积核为1*1的卷积操作,卷积完毕后通道数变为1,作为输出结果
    conv10 = Conv2D(1, 1, activation='sigmoid')(conv9)

    model = Model(inputs=inputs, outputs=conv10)
    #keras内置函数,对模型进行编译
    model.compile(optimizer=Adam(lr=1e-4), loss='binary_crossentropy', metrics=['accuracy'])
    # optimizer:优化器
    # binary_crossentropy:与sigmoid相对应的损失函数
    # metrics:评估模型在训练和测试时的性能的指标

    if pretrained_weights:
        model.load_weights(pretrained_weights)

    return model

空洞卷积主要是在第四层和第五层实现的。

处理前:
在这里插入图片描述
处理后:

在这里插入图片描述

总结:

将unet和空洞卷积结合了,接下来该将之前学到的复杂卷积都实现了,但是不一定都换上空洞卷积都会有好的效果,还是需要继续努力学习新的知识,加油!

要在UNet的桥接部分加入空洞卷积,可以在解码器的各个层之间插入空洞卷积层。下面是一个示例代码,展示如何在UNet的桥接部分加入空洞卷积: ```python import torch import torch.nn as nn from torchvision.models import densenet121 class UNet(nn.Module): def __init__(self, in_channels, out_channels): super(UNet, self).__init__() # 替换UNet的主干网络为DenseNet self.densenet = densenet121(pretrained=True) # 调整DenseNet的输入通道数 self.densenet.features.conv0 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) # 定义UNet的其他层 self.encoder1 = self.densenet.features.denseblock1 self.encoder2 = self.densenet.features.denseblock2 self.encoder3 = self.densenet.features.denseblock3 self.encoder4 = self.densenet.features.denseblock4 # 定义解码器和空洞卷积层 self.decoder4 = nn.Sequential( nn.ConvTranspose2d(1024, 512, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=2, dilation=2), nn.BatchNorm2d(512), nn.ReLU() ) self.decoder3 = nn.Sequential( nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), nn.BatchNorm2d(256), nn.ReLU(), nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=2, dilation=2), nn.BatchNorm2d(256), nn.ReLU() ) self.decoder2 = nn.Sequential( nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=2, dilation=2), nn.BatchNorm2d(128), nn.ReLU() ) self.decoder1 = nn.Sequential( nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=2, dilation=2), nn.BatchNorm2d(64), nn.ReLU() ) self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1) def forward(self, x): # 编码器部分 encoder1 = self.encoder1(x) encoder2 = self.encoder2(encoder1) encoder3 = self.encoder3(encoder2) encoder4 = self.encoder4(encoder3) # 解码器部分 decoder4 = self.decoder4(encoder4) decoder3 = self.decoder3(decoder4 + encoder3) decoder2 = self.decoder2(decoder3 + encoder2) decoder1 = self.decoder1(decoder2 + encoder1) # 上采样 upsampled = self.upsample(decoder1) # 输出层 output = self.final_conv(upsampled) return output ``` 在上面的代码中,我们在解码器的各个层之间插入了一个空洞卷积层。空洞卷积通过在卷积操作中引入空洞(dilation)参数,可以扩大卷积核的感受野,从而增加网络的感知能力。 请注意,上面的代码中只是示例,你可以根据需要调整空洞卷积层的参数和位置。 希望这可以回答你的问题!如果你还有其他问题,请继续提问。
评论 50
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值