阿里云天池 金融风控训练营 · Task 3 特征工程学习笔记

本学习笔记为阿里云天池金融风控训练营的学习内容,学习链接为:https://tianchi.aliyun.com/specials/activity/promotion/aicampdocker

1、学习知识点概要

在这里插入图片描述

2、学习内容1

2.1数据预处理

  • 缺失值的填充
  • 时间格式处理
  • 对象类型特征转换到数值

废话不多说,直接上代码

# 需要提前安装的包
!pip install catboost --user
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import datetime
from tqdm import tqdm
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.preprocessing import MinMaxScaler
import xgboost as xgb
import lightgbm as lgb
from catboost import CatBoostRegressor
import warnings
from sklearn.model_selection import StratifiedKFold, KFold
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score, log_loss
warnings.filterwarnings('ignore')
data_train =pd.read_csv('train.csv')
data_test_a = pd.read_csv('testA.csv')

2.2特征预处理

数据EDA部分我们已经对数据的大概和某些特征分布有了了解,数据预处理部分一般我们要处理一些EDA阶段分析出来的问题,这里介绍了数据缺失值的填充,时间格式特征的转化处理,某些对象类别特征的处理。

步骤:

  1. 首先我们查找出数据中的对象特征和数值特征
numerical_fea = list(data_train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(data_train.columns)))
label = 'isDefault'
numerical_fea.remove(label)
  1. 在比赛中数据预处理是必不可少的一部分,对于缺失值的填充往往会影响比赛的结果,在比赛中不妨尝试多种填充然后比较结果选择结果最优的一种; 比赛数据相比真实场景的数据相对要“干净”一些,但是还是会有一定的“脏”数据存在,清洗一些异常值往往会获得意想不到的效果。
    缺失值填充
把所有缺失值替换为指定的值0

data_train = data_train.fillna(0)

向用缺失值上面的值替换缺失值

data_train = data_train.fillna(axis=0,method='ffill')

纵向用缺失值下面的值替换缺失值,且设置最多只填充两个连续的缺失值

data_train = data_train.fillna(axis=0,method='bfill',limit=2)
#查看缺失值情况
data_train.isnull().sum()
#按照平均数填充数值型特征
data_train[numerical_fea] = data_train[numerical_fea].fillna(data_train[numerical_fea].median())
data_test_a[numerical_fea] = data_test_a[numerical_fea].fillna(data_train[numerical_fea].median())
#按照众数填充类别型特征
data_train[category_fea] = data_train[category_fea].fillna(data_train[category_fea].mode())
data_test_a[category_fea] = data_test_a[category_fea].fillna(data_train[category_fea].mode())
data_train.isnull().sum()
#查看类别特征
category_fea

注:category_fea:对象型类别特征需要进行预处理,其中[‘issueDate’]为时间格式特征。

时间格式处理

#转化成时间格式
for data in [data_train, data_test_a]:
    data['issueDate'] = pd.to_datetime(data['issueDate'],format='%Y-%m-%d')
    startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
    #构造时间特征
    data['issueDateDT'] = data['issueDate'].apply(lambda x: x-startdate).dt.days
data_train['employmentLength'].value_counts(dropna=False).sort_index()
def employmentLength_to_int(s):
    if pd.isnull(s):
        return s
    else:
        return np.int8(s.split()[0])
for data in [data_train, data_test_a]:
    data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
    data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
    data['employmentLength'] = data['employmentLength'].apply(employmentLength_to_int)
data['employmentLength'].value_counts(dropna=False).sort_index()
data_train['earliesCreditLine'].sample(5)
for data in [data_train, data_test_a]:
    data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))

类别特征处理

# 部分类别特征
cate_features = ['grade', 'subGrade', 'employmentTitle', 'homeOwnership', 'verificationStatus', 'purpose', 'postCode', 'regionCode', \
                 'applicationType', 'initialListStatus', 'title', 'policyCode']
for f in cate_features:
    print(f, '类型数:', data[f].nunique())
for data in [data_train, data_test_a]:
    data['grade'] = data['grade'].map({'A':1,'B':2,'C':3,'D':4,'E':5,'F':6,'G':7})
# 类型数在2之上,又不是高维稀疏的,且纯分类特征
for data in [data_train, data_test_a]:
    data = pd.get_dummies(data, columns=['subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)

2.3 异常值处理

当你发现异常值后,一定要先分清是什么原因导致的异常值,然后再考虑如何处理。首先,如果这一异常值并不代表一种规律性的,而是极其偶然的现象,或者说你并不想研究这种偶然的现象,这时可以将其删除。其次,如果异常值存在且代表了一种真实存在的现象,那就不能随便删除。在现有的欺诈场景中很多时候欺诈数据本身相对于正常数据勒说就是异常的,我们要把这些异常点纳入,重新拟合模型,研究其规律。能用监督的用监督模型,不能用的还可以考虑用异常检测的算法来做。
注意test的数据不能删。

检测异常的方法一:均方差
统计学中,如果一个数据分布近似正态,那么大约 68% 的数据值会在均值的一个标准差范围内,大约 95% 会在两个标准差范围内,大约 99.7% 会在三个标准差范围内。

def find_outliers_by_3segama(data,fea):
    data_std = np.std(data[fea])
    data_mean = np.mean(data[fea])
    outliers_cut_off = data_std * 3
    lower_rule = data_mean - outliers_cut_off
    upper_rule = data_mean + outliers_cut_off
    data[fea+'_outliers'] = data[fea].apply(lambda x:str('异常值') if x > upper_rule or x < lower_rule else '正常值')
    return data

得到特征的异常值后可以进一步分析变量异常值和目标变量的关系

data_train = data_train.copy()
for fea in numerical_fea:
    data_train = find_outliers_by_3segama(data_train,fea)
    print(data_train[fea+'_outliers'].value_counts())
    print(data_train.groupby(fea+'_outliers')['isDefault'].sum())
    print('*'*10)
#删除异常值
for fea in numerical_fea:
    data_train = data_train[data_train[fea+'_outliers']=='正常值']
    data_train = data_train.reset_index(drop=True) 

检测异常的方法二:箱型图
总结一句话:四分位数会将数据分为三个点和四个区间,IQR = Q3 -Q1,下触须=Q1 − 1.5x IQR,上触须=Q3 + 1.5x IQR;

2.3 数据分桶

特征分箱的目的:

  • 从模型效果上来看,特征分箱主要是为了降低变量的复杂性,减少变量噪音对模型的影响,提高自变量和因变量的相关度。从而使模型更加稳定。

数据分桶的对象:

  • 将连续变量离散化
  • 将多状态的离散变量合并成少状态

分箱的原因:

  • 数据的特征内的值跨度可能比较大,对有监督和无监督中如k-均值聚类它使用欧氏距离作为相似度函数来测量数据点之间的相似度。都会造成大吃小的影响,其中一种解决方法是对计数值进行区间量化即数据分桶也叫做数据分箱,然后使用量化后的结果。

分箱的优点:

  • 处理缺失值:当数据源可能存在缺失值,此时可以把null单独作为一个分箱。
  • 处理异常值:当数据中存在离群点时,可以把其通过分箱离散化处理,从而提高变量的鲁棒性(抗干扰能力)。例如,age若出现200这种异常值,可分入“age > 60”这个分箱里,排除影响。
    业务解释性:我们习惯于线性判断变量的作用,当x越来越大,y就越来越大。但实际x与y之间经常存在着非线性关系,此时可经过WOE变换。

特别要注意一下分箱的基本原则:

(1)最小分箱占比不低于5%
(2)箱内不能全部是好客户
(3)连续箱单调

1.固定宽度分箱
当数值横跨多个数量级时,最好按照 10 的幂(或任何常数的幂)来进行分组:09、1099、100999、10009999,等等。固定宽度分箱非常容易计算,但如果计数值中有比较大的缺口,就会产生很多没有任何数据的空箱子。

# 通过除法映射到间隔均匀的分箱中,每个分箱的取值范围都是loanAmnt/1000
data['loanAmnt_bin1'] = np.floor_divide(data['loanAmnt'], 1000)
## 通过对数函数映射到指数宽度分箱
data['loanAmnt_bin2'] = np.floor(np.log10(data['loanAmnt']))

2.分位数分箱

data['loanAmnt_bin3'] = pd.qcut(data['loanAmnt'], 10, labels=False)

3.卡方分箱及其他分箱方法的尝试

  • 这一部分属于进阶部分,学有余力的同学可以自行搜索尝试。

2.4 特征交互

交互特征的构造非常简单,使用起来却代价不菲。如果线性模型中包含有交互特征对,那它的训练时间和评分时间就会从 O(n) 增加到 O(n2),其中 n 是单一特征的数量。

for col in ['grade', 'subGrade']: 
    temp_dict = data_train.groupby([col])['isDefault'].agg(['mean']).reset_index().rename(columns={'mean': col + '_target_mean'})
    temp_dict.index = temp_dict[col].values
    temp_dict = temp_dict[col + '_target_mean'].to_dict()

    data_train[col + '_target_mean'] = data_train[col].map(temp_dict)
    data_test_a[col + '_target_mean'] = data_test_a[col].map(temp_dict)
# 其他衍生变量 mean 和 std
for df in [data_train, data_test_a]:
    for item in ['n0','n1','n2','n4','n5','n6','n7','n8','n9','n10','n11','n12','n13','n14']:
        df['grade_to_mean_' + item] = df['grade'] / df.groupby([item])['grade'].transform('mean')
        df['grade_to_std_' + item] = df['grade'] / df.groupby([item])['grade'].transform('std')

2.5特征编码

#label-encode:subGrade,postCode,title
# 高维类别特征需要进行转换
for col in tqdm(['employmentTitle', 'postCode', 'title','subGrade']):
    le = LabelEncoder()
    le.fit(list(data_train[col].astype(str).values) + list(data_test_a[col].astype(str).values))
    data_train[col] = le.transform(list(data_train[col].astype(str).values))
    data_test_a[col] = le.transform(list(data_test_a[col].astype(str).values))
print('Label Encoding 完成')

逻辑回归等模型要单独增加的特征工程

  • 对特征做归一化,去除相关性高的特征
  • 归一化目的是让训练过程更好更快的收敛,避免特征大吃小的问题
  • 去除相关性是增加模型的可解释性,加快预测过程
# 举例归一化过程
#伪代码
for fea in [要归一化的特征列表]:
    data[fea] = ((data[fea] - np.min(data[fea])) / (np.max(data[fea]) - np.min(data[fea])))

2.6特征选择

  • 特征选择技术可以精简掉无用的特征,以降低最终模型的复杂性,它的最终目的是得到一个简约模型,在不降低预测准确率或对预测准确率影响不大的情况下提高计算速度。特征选择不是为了减少训练时间(实际上,一些技术会增加总体训练时间),而是为了减少模型评分时间。
    特征选择的方法:
  1. Filter
    方差选择法
    相关系数法(pearson 相关系数)
    卡方检验
    互信息法
  2. Wrapper (RFE)
    递归特征消除法
  3. Embedded
    基于惩罚项的特征选择法
    基于树模型的特征选择

Filter

  • 基于特征间的关系进行筛选

方差选择法

  • 方差选择法中,先要计算各个特征的方差,然后根据设定的阈值,选择方差大于阈值的特征
    from sklearn.feature_selection import VarianceThreshold
    #其中参数threshold为方差的阈值
    VarianceThreshold(threshold=3).fit_transform(train,target_train)

相关系数法

  • Pearson 相关系数 皮尔森相关系数是一种最简单的,可以帮助理解特征和响应变量之间关系的方法,该方法衡量的是变量之间的线性相关性。 结果的取值区间为 [-1,1] , -1 表示完全的负相关, +1表示完全的正相关,0 表示没有线性相关。
    from sklearn.feature_selection import SelectKBest
    from scipy.stats import pearsonr
    #选择K个最好的特征,返回选择特征后的数据
    #第一个参数为计算评估特征是否好的函数,该函数输入特征矩阵和目标向量,
    #输出二元组(评分,P值)的数组,数组第i项为第i个特征的评分和P值。在此定义为计算相关系数
    #参数k为选择的特征个数

SelectKBest(k=5).fit_transform(train,target_train)

卡方检验

  • 经典的卡方检验是用于检验自变量对因变量的相关性。 假设自变量有N种取值,因变量有M种取值,考虑自变量等于i且因变量等于j的样本频数的观察值与期望的差距。 其统计量如下: χ2=∑(A−T)2T,其中A为实际值,T为理论值
    (注:卡方只能运用在正定矩阵上,否则会报错Input X must be non-negative)
    from sklearn.feature_selection import SelectKBest
    from sklearn.feature_selection import chi2
    #参数k为选择的特征个数

SelectKBest(chi2, k=5).fit_transform(train,target_train)

  • 互信息法
    经典的互信息也是评价自变量对因变量的相关性的。 在feature_selection库的SelectKBest类结合最大信息系数法可以用于选择特征,相关代码如下:
    from sklearn.feature_selection import SelectKBest
    from minepy import MINE
    #由于MINE的设计不是函数式的,定义mic方法将其为函数式的,
    #返回一个二元组,二元组的第2项设置成固定的P值0.5
    def mic(x, y):
    m = MINE()
    m.compute_score(x, y)
    return (m.mic(), 0.5)
    #参数k为选择的特征个数
    SelectKBest(lambda X, Y: array(map(lambda x:mic(x, Y), X.T)).T, k=2).fit_transform(train,target_train)

Wrapper (Recursive feature elimination,RFE)

  • 递归特征消除法 递归消除特征法使用一个基模型来进行多轮训练,每轮训练后,消除若干权值系数的特征,再基于新的特征集进行下一轮训练。 在feature_selection库的RFE类可以用于选择特征,相关代码如下(以逻辑回归为例):
    from sklearn.feature_selection import RFE
    from sklearn.linear_model import LogisticRegression
    #递归特征消除法,返回特征选择后的数据
    #参数estimator为基模型
    #参数n_features_to_select为选择的特征个数
    RFE(estimator=LogisticRegression(), n_features_to_select=2).fit_transform(train,target_train)

Embedded

  • 基于惩罚项的特征选择法 使用带惩罚项的基模型,除了筛选出特征外,同时也进行了降维。 在feature_selection库的SelectFromModel类结合逻辑回归模型可以用于选择特征,相关代码如下:
    from sklearn.feature_selection import SelectFromModel
    from sklearn.linear_model import LogisticRegression
    #带L1惩罚项的逻辑回归作为基模型的特征选择
    SelectFromModel(LogisticRegression(penalty=“l1”, C=0.1)).fit_transform(train,target_train)

  • 基于树模型的特征选择 树模型中GBDT也可用来作为基模型进行特征选择。 在feature_selection库的SelectFromModel类结合GBDT模型可以用于选择特征,相关代码如下:
    from sklearn.feature_selection import SelectFromModel
    from sklearn.ensemble import GradientBoostingClassifier
    #GBDT作为基模型的特征选择
    SelectFromModel(GradientBoostingClassifier()).fit_transform(train,target_train)
    本数据集中我们删除非入模特征后,并对缺失值填充,然后用计算协方差的方式看一下特征间相关性,然后进行模型训练

# 删除不需要的数据
for data in [data_train, data_test_a]:
    data.drop(['issueDate'], axis=1,inplace=True)
"纵向用缺失值上面的值替换缺失值"
data_train = data_train.fillna(axis=0,method='ffill')
x_train = data_train
#计算协方差
data_corr = x_train.corrwith(data_train.isDefault) #计算相关性
result = pd.DataFrame(columns=['features', 'corr'])
result['features'] = data_corr.index
result['corr'] = data_corr.values
# 当然也可以直接看图
data_numeric = data_train[numerical_fea]
correlation = data_numeric.corr()

f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

在这里插入图片描述
在这里插入图片描述

3、学习问题与解答

3.1 特征工程是什么

  1. 一般包括特征使用、特征提取、特征处理、特征选择和特征监控
  2. 特征工程是机器学习,甚至是深度学习中最为重要的一部分,在实际应用中往往也是所花费时间最多的一步
  3. 各种算法书中对特征工程部分的讲解往往少得可怜,因为特征工程和具体的数据结合的太紧密,很难系统地覆盖所有场景
  4. 由于强调特征的可解释性,特征分箱尤其重要

总结:
特征工程虽然之前有所耳闻,但是分桶操作还是比较陌生的,这一次我把所有内容都搬过来的原因就是我觉得特征工程在机器学习比赛中十分重要,并且占有一定的位置,所以如果不能知道全部大概的话会漏掉一些加特征。Kaggle上有一句非常经典的话,数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已,而这恰恰是课堂上最为缺失,一门需要在实践中学习的手艺。

3.2 比较重要的部分——特征的处理及选择2

特征处理包含:

  • 数据清洗
  • 数据规范化
  • 特征衍生与提取

特征选择包含:

  • 特征过滤
  • wrapper
  • embedded

4、学习思考与总结(三点)

一、首先特征工程是得到原始数据之后的进一步操作,它是处在一个十分关键点的位置上的,所以学习它十分重要~

二、正如总结所说,关于特征工程算法书上讲解的比较少,往往需要亲自尝试才知道。

三、虽然特征工程的操作步骤有很多,但是将这些代码收集好准备应对不同情况的数据,再多尝试几次,应该会更加熟练。

参考


  1. 阿里云天池 金融风控-Task3 ↩︎

  2. 特征工程之特征的处理及选择 ↩︎

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值