形状分析在植物种类鉴定方面的应用

本文探讨了形状分析方法在植物种类鉴定中的有效性,特别是在处理叶片分类问题时,利用边缘轮廓数据进行分析,避免了光强变化、叶片缺陷等问题。通过引用相关文献,阐述了基于曲线的识别工作,并介绍了预处理步骤,包括RGB转灰度、直方图阈值处理、边缘增强等。此外,提到了基于srv-framework的分类方法和一些未明概念如one-leave-out test和MAP等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景介绍

叶片分类问题难点是叶片表面性质不同引起的光强改变,叶片部分包卷,缺损,虫蛀的情况。这类问题不适合使用图像数据进行识别和判断,更适合边缘的轮廓数据进行分析。边缘曲线对光强,叶片反光,叶片中心的虫蛀,缺损本身就不敏感。同时,识别叶片的方法主要在于叶片的整体形状以及边缘细节的光滑度。因此,这是证明形状分析方法有效性和应用性非常合适的应用背景。

相关文献

下列几篇文章使用了曲线去做相关的识别工作,并附上文章中我所感兴趣的内容:

  1. Similarity Metric For Curved Shapes In Euclidean Space (CVPR) Demisse基于李群的度量方法,认为Srivastava的方法容易忽略曲线的细节信息的做法是不合适的。
  2. A leaf recognition algorithm for plant classification using probabilistic neural network. 提供了Flavia数据库及相应处理代码。
  3. Landmark-free statistical analysis of the shape of plant leaves (Journal of Theoretical Biology) 给出了使用曲线分类的评判标准: MAP 以及 Precision-Recall图。
  4. A Shape-based Approach for Leaf Classification using Multiscale Triangular Representation 和
  5. A riemannian elastic metric for shape-based plant leaf classification 提供了Precision-Recall的计算公式 后者更加详细。
  6. Plant sp
基于深度学习(6种算法)和传统机器学习分别实现Flavia叶片数据集识别分类python源码(含详细使用说明+注释) 【项目介绍】 深度学习算法包含6种:分别是Alexnet、GoogLeNet、HRnet、Resnet18、Selfnet、VGG11,可对比 1. Leaf_data_acquisition.py ## 1.1 介绍说明 提取叶片特征,并保存为csv文件,为后续使用机器学习算法进行分类做准备。 ## 1.2 图像预处理 1. histogram(image)函数的作用是获取输入图片R、G、B三通道的像素值分布情况。 2. binarization(imgray)函数的作用是分别使用2x2、3x3、5x5的卷积核对输入的灰度图进行平均滤波和二值化处理。 3. margin_detection(imgbi)函数的作用是使用拉普拉斯算子提取图像边缘特征。 ## 1.3 特征提取 1. feature5_extraction(imgray, thresh_5x5, thresh_3x3, thresh_2x2)函数的作用是提取5种几何特征,即最小外接圆直径、最小外接矩形的宽度和高度、不同卷积核平均滤波后的叶片面积(2x2、3x3、5x5)、3x3卷积核平均滤波后的叶片周长。 2. feature12_extraction(thresh, feature)函数的作用是根据上面提取到的5种几何特征,获取12种数字形态特征,即平滑因子、纵横比、形状因子、矩形程度、狭窄因子、直径周长比、周长与长宽比、5种静脉特征。 ## 1.4 数据降维 data_PCA(img_data)函数的作用是将12种数字形态特征降维到5维。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。 3、用途:项目具有较高的学习借鉴价值,不仅适用于小白学习入门进阶。也可作为毕设项目、课程设计、大作业、初期项目立项演示等。 4、如果基础还行,或热爱钻研,亦可在此项目代码基础上进行修改添加,实现其他不同功能。 欢迎下载,沟通交流,互相学习,共同进步! # 2. Leaf_classification_ML.py ## 2.1 介绍说明 根据叶片特征,使用不同的机器学习算法对叶片进行分类。 ## 2.2 数据预处理 1. encode(train, test)函数的作用是对训练集和测试集中的数据进行编码,以及其他预处理操作。 2. deta_acquisition()函数的作用是对训练集按4:1的比例划分为训练集和测试集(验证集)。 ## 2.3 叶片分类 ML_classifier(X_train, X_test, y_train, y_test)函数的作用是使用不同的机器学习算法对叶片进行分类,并显示分类准确率和损失函数,其中列表**classifiers**中包含了所使用的机器学习算法。 ## 2.4 实验结果
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值