数据结构之图的单源最短路径

我是自动化专业的应届研究生,最终拿到了tplink、华为、vivo等公司的ssp的offer,分享自己学习过的计算机基础知识(C语言+操作系统+计算机网络+linux)以及数据结构与算法的相关知识,保证看完让你有所成长。
欢迎关注我,学习资料免费分享给你哦!还有其他超多学习资源,都是我自己学习过的,经过过滤之后的资源,免去你还在因为拥有大量资源不知如何入手的纠结,让你体系化学习。

在这里插入图片描述

图的单源最短路径概述

对于一个图来说,在应用之中,除了遍历,还有一种就是求取最短路径或者说求取代价最小的方式,以生活中的旅游来说,比如你在北京出发,想要去海南,有几种路径可以选择,经过上海到达或者从北京到山西到陕西到四川到云南才到达,你会怎么选择呢?如果这里的评判标准只是在路上的花费最少,那你肯定选择的是经上海到达,路费最低,这就是图的一种应用,寻找到代价最小的路径。

何谓单源?就是对于一个图来说,你指定一个初始点,求出这个初始点到整个图中的其他各点的最短路径,就是单源,就是一个起点。

无权图的单源最短路径

在这里插入图片描述

以上图为例,分析算法的执行过程,我们以0为起点,找到到其他各点的最短路径,因为没有各个边没有权重,所以我们可以看成权重都为1.首先是找到与0相连接的顶点1和6,到达它们的最短路径都为1.然后在从1出发,找到与1相连的顶点2和3,将其路径值置为2,然后在以顶点6为出发点,找到与顶点6相连的顶点,发现没有。

在这里插入图片描述

然后在以从顶点0开始的最短路径为2的顶点2来寻找,顶点4新最短路径为3。因为顶点3已经更新了,所以以顶点2为起点的时候,不在更新顶点3了。然后以顶点3为起点,顶点4和6已经更新了,只更新顶点5,路径长度为3.

在这里插入图片描述

然后在分别以4和5为起点,但是发现4和5为起点的时候,与他们相连的顶点都已经更新过了,不需要更新了。所以找到了以0为起点的最短路径。

其实将这个分析的过程与图的广度优先遍历是很相似的,以起点为中心,然后将与起点相连的顶点访问,然后在扩散出去,一层接一层。这样我们就可以使用一个数组来表示到达起点的最短路径的值。最开始使用一个无穷数或者-1之类的,表示还未更新,也代表着这个顶点未被访问。这样就省去了广度优先遍历visit数组来表示顶点是否被访问过。

在这里插入图片描述

首先以0为起点,那么它的最短路径就是0.然后将0输入队列。进入循环,只要队列不空,就一直在循环中,队列不空,说明图中的顶点没有被全部访问到。然后将0出队,寻找与0相连的顶点,判断他们是否被访问,就是判断这个顶点所在数组值是否为999,是就代表没有被访问。然后更新。并将更新顶点值的顶点入队。这次更新了1和6顶点,所以顶点1和6入队,目前队列里的值为1,6.

在这里插入图片描述
然后1出队,更新2和3,并且将2和3入队,目前队列里为6,2,3.

在这里插入图片描述

直到顶点全部出队,完成了更新,数组中的值就是从起点0到各个顶点的最短路径。

void Unweighted ( LGraph Graph, int dist[], int path[], Vertex S )
{
   
    Queue Q;
    Vertex V;
    PtrToAdjVNode W;
     
    Q = CreateQueue( Graph->Nv ); /* 创建空队列, MaxSize为外部定义的常数 */
    dist[S] = 0; /* 初始化源点 */
    AddQ (Q, S);
 
    while( !IsEmpty(Q) ){
   
        V = DeleteQ(Q);
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next ) /* 对V的每个邻接点W->AdjV */
            if ( dist[W->AdjV]==-1 ) {
    /* 若W->AdjV未被访问过 */
                dist[W->AdjV] = dist[V]+1; /* W->AdjV到S的距离更新 */
                path[W->AdjV] = V; /* 将V记录在S到W->AdjV的路径上 */
                AddQ(Q, W->AdjV);
            }
    } /* while结束*/
}
有权图的单源最短路径

而对于有权图,就不能使用这种方法了,因为每个边的权重不一样,所以选择顶点的方法就不同了,以出发点出发,更新到与出发点相邻的顶点的权值,然后进入循环,从还未被选择的节点中,选一个到出发点距离最小的顶点A,然后访问与A相连的顶点且没被访问过的B,如果B到起始点的距离比A到起始点的距离加AB的权值大的话,说明从起始点经过A到B是最短路径,更新B到起始点的距离。直到找不到未被访问的顶点为止,结束循环,这样就把整个图中从起始点到图中各个节点的最短路径找到了。

在这里插入图片描述

相比较无权图的最短路径,可以用数组dist自身来判断是否是被访问过不同,有权图需要添加一个visit数组来判断是否是被访问过的,这里的访问过,是指前面所说的“从还未被选择的节点中,选一个到出发点距离最小的顶点A”。

首先初始两个数组,一个代表是否访问过,一个代表到达起始点的最短路径。

在这里插入图片描述

以0为起始点,标记0已经访问过了,visit[0]=1,dist[0]=0,然后根据权值更新与0相连的顶点1和6的最短路径。

在这里插入图片描述

然后从未被访问的1-6的顶点中选取dist值最小的顶点,为1.然后将visit[1]标记为1.现在以顶点1为出发点,更新dist数组,发现与1相连的有顶点2,dist[1]+边12的权值2是小于原来的dist[2],表示的是从起始点0到2顶点的路径中,经过顶点1到顶点2是比原来起始点0到顶点2路径短的(这也是为什么初始化时将dist初始值初始为无穷大的原因,无穷大表示从起始点0不可以到达2,现在可以经过1到达了2,当然要更新最短路径了,如果你初始化最小值,那么永远这个值都不会更新了,也就是出错了),所以更新dist[2]=dist[1]+边12权值2.

同样的道理,与1相连的顶点3,也要更新权值dist[3]=dist[1]+边13权值1.

注意更新权值并不将相应顶点标记为被访问,只有在挑选dist值最小的顶点时,才标记被访问过。因为每个边的权值不同,所以你在当前顶点更新最短路径不一定是最短的,可能从别的顶点过来的路径还存在最短的,所以不能标记。只有等到是从自己出发了,说明从其他顶点到自己的边都已经更新完了,已经可以确认目前的值是最短路径了,所以可以标记。

在这里插入图片描述

在从未访问节点2-6找出dist值最小的顶点3,标记为已经访问vist[3]=1,然后从3出发,与3相连的且未被访问的顶点有5和7,dist[3]+相应边的权值边34(边35)小于dist[4](dist[5])更新权值。因为dist[3]+边36权值大于dist[6],说明经过顶点3的方式到达顶点6不是最短路径,所以不需要更新。
在这里插入图片描述

然后未被访问节点2,4,5,6中,选出顶点6是最小的dist,标记为访问过的。但是发现没有与6相连的顶点。

在这里插入图片描述

然后在2,4,5中选择dist值最小的位顶点2,标记visit[2]=1,然后访问与2相连的顶点,发现3访问过了,dist[2]+边24权值大于dist[4]所以不更新。结束。

对于顶点4和5同样的,没有可以更新的路径了,最终结束了程序,得到了如下的最短路径。

在这里插入图片描述

这个算法被称为Dijkstra代码如下所示:

void dijkstra(Graph graph,int d)  //d为起始点
{
   
	int *dist;
	int *visit;
	int i=0;
	Gnode tmp;
	visit=(int *)malloc(sizeof(int)*graph->Nv);
	if(visit==NULL)
	{
   
		printf("内存不足");
		return;
	}
	clear_visit(visit,graph->Nv);//将visit数组清0,实现在下面
	dist =(int *)malloc(sizeof(int)*graph->Nv);
	if(distt==NULL)
	{
   
		return;
	}
	for(i=0;i<graph->Nv;i++)
	{
   
		dist[i]=INT_MAX;</
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
单源最短路径是指从中的一个源点出发,到达中其他所有顶点的最短路径。数据结构中常用的两种单源最短路径算法是Dijkstra算法和Bellman-Ford算法。 1. Dijkstra算法: Dijkstra算法是一种贪心算法,用于解决带权有向或无向单源最短路径问题。该算法的基本思想是:将中的所有顶点分成两个集合,一个集合为已求出最短路径的顶点集合S,另一个为未求出最短路径的顶点集合V-S。初始时,集合S中只有源点,即S={v},V-S为除源点外的其他顶点。然后,从V-S中选择与源点距离最短的顶点u,将其加入到S中,并更新从源点v到集合V-S中所有顶点的距离。重复执行该过程,直到集合V-S为空。 2. Bellman-Ford算法: Bellman-Ford算法是一种动态规划算法,用于解决带权有向或无向单源最短路径问题。该算法的基本思想是:对于中的任意一条边(u,v),如果存在从源点s到u的最短路径,则从源点s到v的最短路径就是从源点s到u的最短路径加上边(u,v)的权值。因此,Bellman-Ford算法通过对所有边进行松弛操作,不断更新从源点s到各个顶点的最短路径估计值,直到所有边的松弛操作都无法使最短路径估计值发生变化为止。 下面是两种算法的Python实现: 1. Dijkstra算法: ```python import heapq def dijkstra(graph, start): # 初始化距离字典和堆 dist = {node: float('inf') for node in graph} dist[start] = 0 heap = [(0, start)] # 循环直到堆为空 while heap: # 弹出堆中距离最小的顶点 (d, node) = heapq.heappop(heap) # 如果该顶点已经处理过,则跳过 if d > dist[node]: continue # 遍历该顶点的所有邻居 for neighbor, weight in graph[node].items(): # 计算从起点到该邻居的距离 distance = dist[node] + weight # 如果该距离比已有的距离小,则更新距离字典和堆 if distance < dist[neighbor]: dist[neighbor] = distance heapq.heappush(heap, (distance, neighbor)) return dist ``` 2. Bellman-Ford算法: ```python def bellman_ford(graph, start): # 初始化距离字典 dist = {node: float('inf') for node in graph} dist[start] = 0 # 循环V-1次,对所有边进行松弛操作 for i in range(len(graph) - 1): for u in graph: for v, weight in graph[u].items(): if dist[u] + weight < dist[v]: dist[v] = dist[u] + weight # 检查是否存在负权回路 for u in graph: for v, weight in graph[u].items(): if dist[u] + weight < dist[v]: raise ValueError("Graph contains negative weight cycle") return dist ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值