keras编写结构与GARPHS不一致

在使用Keras构建神经网络时,发现实际损失(loss)计算与预期不符,本应在激活函数后连接,但在计算图中显示从归一化层开始计算。这个问题可能涉及到模型构建的顺序或图的可视化误解。
摘要由CSDN通过智能技术生成
def build_generator():
    """
    Create a Generator Model with hyperparameters values defined as follows确定超参
    """
    z_size = 200
    gen_filters = [512, 256, 128, 64, 1]
    gen_kernel_sizes = [4, 4, 4, 4, 4]
    gen_strides = [1, 2, 2, 2, 2]
    gen_input_shape = (1, 1, 1, z_size)
    gen_activations = ['relu', 'relu', 'relu', 'relu', 'sigmoid']
    gen_convolutional_blocks = 5

	#第一个输入层
    input_layer = Input(shape=gen_input_shape)

    # First 3D transpose convolution(or 3D deconvolution) block添加第一个3d反卷积
    a = Deconv3D(filters=gen_filters[0],
                 kernel_size=gen_kernel_sizes[0],
                 strides=gen_strides[0])(input_layer)
    a = BatchNormalization()(a, training=True)
    a = Activation(activation='relu')(a)

    # Next 4 3D transpose convolution(or 3D deconvolution) blocks
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值