- 博客(5)
- 收藏
- 关注
原创 【学习笔记】机器学习算法(四)挖掘幸福感比赛
注:主要参考排行榜第21名的代码总体思路:分别使用LightGBM,xgboost,gbdt,catboost建立多个个体学习器(加入bagging的策略,对数据随机采样),对最终学习器的输出使用岭回归进一步提升精度。#28名 LGBMRegressorimport pandas as pdimport numpy as npdf = pd.read_csv("happiness_train_complete.csv",encoding="GB2312")df = df.sample(frac=
2021-04-27 15:38:28 446 2
原创 【学习笔记】机器学习算法(三)基于LightGBM的分类预测
这里写自定义目录标题一、LightGBM简介优缺点二、学习目标三、实例:基于英雄联盟数据集的LightGBM分类实践3.1 代码流程3.2 数据集3.3 模型训练3.4 利用 LightGBM 进行特征选择3.5 调参一、LightGBM简介LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。LightGBM可以看作是XGBoost的升级豪华版,在获得与XGBoost近似精度的同时,又提供了更快的训练速度与更少的内存消耗。优缺点LightGBM的
2021-04-27 15:12:57 4760 1
原创 【学习笔记】机器学习算法(二):基于XGBoost的分类预测
一、XGBoost简介XGBoost是2016年由华盛顿大学陈天奇老师带领开发的一个可扩展机器学习系统。严格意义上讲XGBoost并不是一种模型,而是一个可供用户轻松解决分类、回归或排序问题的软件包。1、XGBoost优缺点:XGBoost的主要优点:简单易用。相对其他机器学习库,用户可以轻松使用XGBoost并获得相当不错的效果。高效可扩展。在处理大规模数据集时速度快效果好,对内存等硬件资源要求不高。鲁棒性强。相对于深度学习模型不需要精细调参便能取得接近的效果。XGBoost内部实现提升树模
2021-04-15 15:48:46 2004
原创 【学习笔记】机器学习算法(一): 基于逻辑回归的分类预测
【学习笔记】机器学习算法(一): 基于逻辑回归的分类预测学习地址:阿里云天池机器学习中常见的两个问题,一个是回归问题,另一个就是分类问题。本次学习的目标为基于逻辑回归的分类预测。首先明确,虽然名字中带有回归,但是其本质上是一个分类问题。即使用回归来解决分类问题。笔记目录:一、学习知识点概要二、学习内容三、学习问题与解答四、学习思考与总结一、学习知识点概要1、首先主要了解了一下逻辑回归这个概念,并对其应用和现状有了认识。其次明确了本次学习的学习目标,掌握理论,熟悉代码。2、重点学习了代码
2021-04-10 22:32:14 311
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人