【跟着SCI学作图】Matplotlib boxplot绘制箱线图

文章介绍了如何使用Python的Matplotlib库来创建箱线图、散点图和折线图的组合图表,展示了数据的分布和趋势。通过Pandas读取Excel数据,利用describe方法获取统计信息,然后在图表中分别展示箱线图的四分位数、均值折线以及每个年份的散点数据。
摘要由CSDN通过智能技术生成

【跟着SCI学作图】Matplotlib boxplot绘制箱线图

在这里插入图片描述

01 引言:

今天继续复现一下朋友发我了一张论文里的图表(原图如下所示),主要是Matplotlib的箱线图+散点图+折线图的组合图,能够非常直观地展现数据的分布情况及其趋势。
请添加图片描述

02 读取数据 :

由于论文中没提供数据,就拿本地数据做代替,如下图所示,借助pandas读取并转置数据,将年份作为列标签。
请添加图片描述

import pandas as pd
fn = r'D:\ForestMeteorology\FM230331\data\1.xlsx'
df = pd.read_excel(fn)
df1 = df.iloc[:,:11]
df1.set_index('w1',inplace=True)
df1.columns = ['v'+str(i) for i in range(1,11)]
df1 = df1.T
print(df1)

请添加图片描述

03 可视化数据:

图表中主要用到了均值和标准差数据,这边可以借助pandas的describe直接获取。
请添加图片描述

fig,axs = plt.subplots(1,2,figsize=(8,4))
ax = axs[0]
# 箱线图
df1.boxplot(ax = ax,showfliers = False,grid = False,color = 'black')
# 折线图
ax.plot(range(1,2020-1995+2),df1.describe().loc['mean'],c = 'k',marker = 's',markersize = 3.5,zorder = 10)
# 散点图
for j in range(len(df1)):
    ax.scatter(range(1,2020-1995+2),df1.iloc[j,:],s = 3.5,zorder = 5)
ax.set_xticks(range(1,2020-1995+2,5))
ax.set_xticklabels(range(1995,2021,5))
plt.show()

请添加图片描述

04 完整代码如下:

由于两个子图绘制内容一致,将绘图部分代码封装成函数,方便调用,然后调整一下细节就可以了。
请添加图片描述

# -*- encoding: utf-8 -*-
'''
@File    :   GZH.py
@Time    :   2023/03/31 23:02:23
@Author  :   HMX
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''# here put the import lib
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
​
fontdict = {'weight': 'normal','size':10,'color':'k','family':'SimHei'}
mpl.rcParams.update(
    {
    'text.usetex': False,
    'font.family': 'stixgeneral',
    'mathtext.fontset': 'stix',
    "font.family":'serif',
    "font.size": 10,
    "mathtext.fontset":'stix',
    "font.serif": ['Times New Roman'],
    }
    )def df2png(idf,ax,label):
    # 箱线图
    idf.boxplot(ax = ax,showfliers = False,grid = False,color = 'black')
    # 折线图
    ax.plot(range(1,2020-1995+2),idf.describe().loc['mean'],c = 'k',marker = 's',markersize = 3.5,zorder = 10)
    # 散点图
    for j in range(len(idf)):
        ax.scatter(range(1,2020-1995+2),idf.iloc[j,:],s = 3.5,zorder = 5)
​
    ax.set_xticks(range(1,2020-1995+2,5))
    ax.set_xticklabels(range(1995,2021,5))
    ax.set_xlabel('年份',fontdict =fontdict)
    ax.set_ylabel('森气笔记',fontdict =fontdict)
    ax.set_ylim(9,15)
    ax.set_title(label,loc = 'left',y = 0.9)
​
​
# 读取处理数据
fn = r'D:\ForestMeteorology\FM230331\data\1.xlsx'
df = pd.read_excel(fn)
df1 = df.iloc[:,:11]
df1.set_index('w1',inplace=True)
df1.columns = ['v'+str(i) for i in range(1,11)]
df1 = df1.T
# print(df1)
df2 = df.iloc[:,13:-1]
df2.set_index('w2',inplace=True)
df2.columns = ['v'+str(i) for i in range(1,11)]
df2 = df2.T
​
# 可视化
fig,axs = plt.subplots(1,2,figsize=(8,4))
ax1 = axs[0]    
ax2 = axs[1]
df2png(df1,ax1,'  (a)')
df2png(df2,ax2,'  (b)')
plt.tight_layout()
plt.savefig(r'D:\ForestMeteorology\FM230331\data\GZH.png',dpi = 600)
plt.show()

以上就是本期推文的全部内容了,如果对你有帮助的话,请‘点赞’、‘收藏’,‘关注’,你们的支持是我更新的动力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值