超越函数e^(-x^2)在(-∞, +∞)上的定积分的两种解法

I = \int_{-\infty }^{+\infty }e^{-x^{2}}dx

解法一 二重积分+极坐标

I^{2} = \int_{-\infty }^{+\infty }e^{-x^{2}}dx\int_{-\infty }^{+\infty }e^{-y^{2}}dy

      = \iint e^{-(x^{2}+y^{2})}dxdy

      = \iint e^{-r^{2}}rdrd\theta

      \dpi{120} = \int_{0}^{2\pi} d\theta \int_{0 }^{+\infty} e^{-r^{2}}rdr

      = \theta \mid_{0}^{2\pi} \cdot (-\frac{1}{2}e^{-r^{2}}\mid_{0 }^{+\infty })

      = 2\pi\cdot \frac{1}{2}

      = \pi

I = \sqrt{\pi}

 

解法二 Γ函数+余元公式

I = \int_{-\infty }^{+\infty }e^{-x^{2}}dx

    \dpi{120} = 2\int_{0}^{+\infty }e^{-t}\frac{1}{2}t^{-\frac{1}{2}}dt

    = \int_{0}^{+\infty }e^{-t}t^{-\frac{1}{2}}dt

    = \Gamma (\frac{1}{2})

又由余元公式,有

\Gamma (s)\Gamma (1-s) = \frac{\pi }{sin\pi s} (0< s < 1)

于是

\dpi{120} I^{2}=\frac{\pi}{sin\frac{\pi}{2}} =\pi

I = \sqrt{\pi}

  • 21
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
### 回答1: 要求解定积分 $\int_{x}^{\infty} e^{-y} dy$。 首先,我们可以对 $e^{-y}$ 进行不定积分,得到 $-\int e^{-y} d(-y) = -e^{-y} + C$,其中 $C$ 为积分常数。 然后,我们可以将积分限代入不定积分的结果,得到: $$\int_{x}^{\infty} e^{-y} dy = \left[ -e^{-y} \right]_{x}^{\infty} = \lim_{t \rightarrow \infty} (-e^{-t} - (-e^{-x}))$$ 当 $t \rightarrow \infty$ 时,$e^{-t} \rightarrow 0$,因此上式等于: $$\int_{x}^{\infty} e^{-y} dy = e^{-x}$$ 因此,定积分 $\int_{x}^{\infty} e^{-y} dy$ 的结果为 $e^{-x}$。 ### 回答2: 要计算定积分$\int_{x}^{\infty} e^{-y} \,dy$。 我们可以使用变量代换的方法来求解这个积分。我们令$u=-y$,则$du=-dy$。同时,当$y$趋近于正无穷时,$u$会趋近于负无穷。 当$y=x$时,$u=-x$;当$y$趋近于正无穷时,$u$趋近于负无穷。 代入积分得:$\int_{-x}^{-\infty}e^u \,du$。 再次改写积分的上下限,得到$\int_{-\infty}^{-x}e^u \,du$。 现在,我们需要解决这个积分。反函数$(-e^u)'=-e^u$,所以我们可以将其积分改为负号并换回到$y$的变量。 得到的结果是:$\left[-e^u\right]_{-\infty}^{-x}=-e^{-x}-(-e^{-\infty})=-e^{-x}$。 因此,定积分$\int_{x}^{\infty} e^{-y} \,dy$的结果为$-e^{-x}$。 总结:定积分$\int_{x}^{\infty} e^{-y} \,dy$的结果为$-e^{-x}$。 ### 回答3: 要计算定积分$\int_x^{+\infty} e^{-y} \, dy$。 首先,我们注意到$e^{-y}$是连续函数,且在区间$(x, +\infty)$上始终为正。因此,该定积分存在。 我们可以使用不定积分的方法来计算出该定积分的值。记$F(y)=-e^{-y}$,则$F'(y)=e^{-y}$。根据不定积分的性质,我们有: $$\int e^{-y} \, dy = -e^{-y} + C$$ 这里的$C$是积分常数。将上述结果代入定积分的表达式中,我们有: $$\int_x^{+\infty} e^{-y} \, dy = \lim_{y\to+\infty} \left(-e^{-y} - (-e^{-x})\right)$$ 由于当$y$趋向于正无穷时,$-e^{-y}$趋近于0,以上极限为: $$\int_x^{+\infty} e^{-y} \, dy = e^{-x}$$ 综上所述,定积分$\int_x^{+\infty} e^{-y} \, dy$的值为$e^{-x}$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值