e^(x^2)的定积分
2013年真题心得:1.AB=C B可逆2.少e3.定积分的应用 绕y绕x旋转4.二重积分运算错误5.证明题 微分中值定理 f(a)-f(b)=f'(x)(a-b)6.条件极值 某点到原点的最长距离 7.弧长 注意平方8.形心9.给出AC-CA=B矩阵的关系式,求C,应该设C的什么,然后根据式子解方程有解求出来10.求矩阵标准型就是求矩阵的特征值
车身1000-1200 涡轮700-800
这个不定积分存在,但是不能用初等函数表达
高等数学【典型例题】计算定积分2/√2∫(0-1/2)(e^-x^2)dx的近似值,误差不超过0.0001.
有个e^(-x^2)定积分是这样积得。积分范围(0,∞)
假如设 i=∫e^(-x^2), 积分范围(0,∞)
i^2=∫e^(-y^2)∫e^(-x^2)==∫∫e^-(x^2+y^2)dxdy
然后把i^2变换为极坐标积分,
积分范围为xy平面,即 ∫(0,pi/2)∫(0,∞)
然后开平方i^2,求得i
高数微积分高维生命体为人民服务第一期华为手机公式编辑器HLWRC手动操作集合图1分部积分法比较定积分大小。输入∫ln³xdx,1<x<e@海离薇。图2不定积分竞赛。深夜福利345678禁止断章取义而代值cosx泰勒公式乘法天下第一题库。我能瞎编乱遭原创极限题目,绝望也要独自从容赴死。数学竞赛唉。
解析:
∫e^(-x^2)dx=(-1/2)∫de^(-x^2)/x
=(-1/2)e^(-x^2)/x -(1/2)∫e^(-x^2)dx/x^2
=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3+(1/4)∫e^(-x^2)d(1/x^3)
=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)∫e^(-x^2)d(1/x^4)
x^2
=t ∫e^(-x^2)d(1/x^4)
=∫e^(-t)d(1/t^2)=e^(-t)/t^2+∫e^(-t)dt/t^2
=e^(-t)/t^2-e^(-t)/t-∫e^(-t)dt/te^x
=1+x+x^2/2!+x^3/3!+x^4/4!+..+x^n/n!e^(-t)
=1+(-t)+(-t)^2/2!+(-t)^3/3!+..+(-t)^n/n!
∫e^(-t)dt/t=lnt-t -t^2/(2*2!)-t^3/(3*3!)-..-t^n/(n*n!)
所以∫e^(-x^2)dx=(-1/2)e^(-x^2)/x-(1/4)e^(-x^2)/x^3-(1/8)e^(-x^2)/x^4+(1/8)e^(-x^2)/x^4-(1/8)e^(-x^2)/x^2-(1/8)[ln(x^2)-x^2-(x^2)^2/(2*2!)-(x^2)^3/(3*3!)-..-(x^2)^n/(n*n!)]
扩展资料:
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数。因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
参考资料来源:百度百科-不定积分
求数学帝,帮解定积分。被积函数是x^2*e^(-x^4)
条件高斯分布 O网页链接这篇讲得比较清晰,注意公式推导,比较麻烦。
用分布积分法
e^(x^2)对x积分 = xe^(x^2) - e^(x^2)/2 + c
供参考
发表了博文《matlab求积分》1.int()函数matlab求不定积分&8203;我们要求f(x)的不定积分symsxCint(f(x))+Cmatlab求定积分求函数"x^2*e^x"在(0到1Omatlab求积分
现在有刷记录活动可以换EXS2,==买也行呀
这个积分要化为二重积分才能做
就是先算[∫e^(x²)dx]^2
∫∫e^x²e^y²dxdy
=∫∫e^(x²+y²)dxdy
再运用极坐标变换
r^2=x^2+y^2
dxdy=rdrdθ
∫∫e^(x²+y²)dxdy
=∫∫e^r^2*rdrdθ (注意到θ∈[0,2π])
=1/2e^r^2*2π
=πe^r^2+C
所以
∫e^x²dx=√(πe^r^2+C)
同意请采纳
本回答被提问者和网友采纳
我们有
SEX2涡轮大约500-600W,车身大约700-800W.
想到了极坐标求定积分,我想尝试一下先把函数$y=e^{-x^2}$转化为极坐标方程再积分,而如果令$\theta=\frac{\pi}{2}$,然后解方程$r\sin\theta=e^{-r^2\cos^2\theta}$,mathematica居然不会……更不要提去完成这个问题了……看来我要放弃这个想法了…… @欲学数学者同我入此门