Description
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。FTD在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在FTD想从A点走到D点,他想知道最少需要走多长时间
Solution
题目要求的精度仅为0.01,所有明摆着让你枚举精度,
枚举其中一条线段的位置,三分另一边的位置即可
Code
#include<cstdio>
#include<cstdlib>
#include<cmath>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
#define sqr(q) ((q)*(q))
#define L(q,w,q1,w1) (sqrt(sqr(q-q1)+sqr(w-w1)))
using namespace std;
typedef double db;
const int N=1500,maxlongint=2147483640;
int ax,ay,bx,by,cx,cy,dx,dy,Q,P,R;
db ans,Ax,Ay,Bx,By,Al,Bl;
db min(db q,db w){return q<w?q:w;}
db sf(db q,db w)
{
db l=0,r=Bl,x,y,x1,y11,t,t1,T,T1;
while(1)
{
t=l+(r-l)/3,t1=l+(r-l)/3*2;
x=t*Bx+cx,y=t*By+cy;x1=t1*Bx+cx,y11=t1*By+cy;
T=(Bl-t)/Q+L(q,w,x,y)/R;T1=(Bl-t1)/Q+L(q,w,x1,y11)/R;
if(r-l<0.001)break;
if(T<T1)r=t1;
else l=t;
}
return T;
}
int main()
{
db x,y;
scanf("%d%d%d%d%d%d%d%d%d%d%d",&ax,&ay,&bx,&by,&cx,&cy,&dx,&dy,&P,&Q,&R);
Ax=1.0*(bx-ax)/L(ax,ay,bx,by);Ay=1.0*(by-ay)/L(ax,ay,bx,by);Al=L(ax,ay,bx,by);
Bx=1.0*(dx-cx)/L(cx,cy,dx,dy);By=1.0*(dy-cy)/L(cx,cy,dx,dy);Bl=L(cx,cy,dx,dy);
ans=maxlongint;
for(db i=0;i<=Al;i+=0.005)
{
x=i*Ax+ax,y=i*Ay+ay;
ans=min(ans,i/P+sf(x,y));
}
printf("%.2lf\n",ans);
return 0;
}