1857: [Scoi2010]传送带
Time Limit: 1 Sec Memory Limit: 64 MB
Submit: 449 Solved: 220
[Submit][Status][Discuss]
Description
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
Input
输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R
Output
输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位
Sample Input
0 0 0 100
100 0 100 100
2 2 1
Sample Output
136.60
HINT
对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
Source
Day2
解析:
当在一条传送带外固定一个点时,从该点到传送带上的点的时间构成一个单峰函数。。。
因此很容易想到三分。。。而且是三分套三分
先在一条传送带上三分一个点,再以该点为基准,在另一条传送带上三分。。。
代码:
/**************************************************************
Problem: 1857
User: jianing
Language: C++
Result: Accepted
Time:40 ms
Memory:804 kb
****************************************************************/
#include<stdio.h>
#include<math.h>
double dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
double xa,xb,xc,xd;
double ya,yb,yc,yd;
double p,q,r;
double x1,y1,x2,y2;
double x3,y3,x4,y4;
double l1,h1,l2,h2;
double d1,d2,dd1,dd2;
freopen("walk.in","r",stdin);
freopen("walk.out","w",stdout);
scanf("%lf%lf%lf%lf",&xa,&ya,&xb,&yb);
scanf("%lf%lf%lf%lf",&xc,&yc,&xd,&yd);
scanf("%lf%lf%lf",&p,&q,&r);
l1=0;
h1=1;
while (h1-l1>1e-6)
{
x1=xa+(l1+(h1-l1)/3)*(xb-xa);
y1=ya+(l1+(h1-l1)/3)*(yb-ya);
l2=0;
h2=1;
while (h2-l2>1e-6)
{
x3=xc+(l2+(h2-l2)/3)*(xd-xc);
y3=yc+(l2+(h2-l2)/3)*(yd-yc);
x4=xc+(l2+(h2-l2)/3*2)*(xd-xc);
y4=yc+(l2+(h2-l2)/3*2)*(yd-yc);
d1=dis(x1,y1,xa,ya)/p+dis(x3,y3,xd,yd)/q+dis(x1,y1,x3,y3)/r;
d2=dis(x1,y1,xa,ya)/p+dis(x4,y4,xd,yd)/q+dis(x1,y1,x4,y4)/r;
if (d1<d2) h2=l2+(h2-l2)/3*2;
else l2=l2+(h2-l2)/3;
}
dd1=d1;
x2=xa+(l1+(h1-l1)/3*2)*(xb-xa);
y2=ya+(l1+(h1-l1)/3*2)*(yb-ya);
l2=0;
h2=1;
while (h2-l2>1e-6)
{
x3=xc+(l2+(h2-l2)/3)*(xd-xc);
y3=yc+(l2+(h2-l2)/3)*(yd-yc);
x4=xc+(l2+(h2-l2)/3*2)*(xd-xc);
y4=yc+(l2+(h2-l2)/3*2)*(yd-yc);
d1=dis(x2,y2,xa,ya)/p+dis(x3,y3,xd,yd)/q+dis(x2,y2,x3,y3)/r;
d2=dis(x2,y2,xa,ya)/p+dis(x4,y4,xd,yd)/q+dis(x2,y2,x4,y4)/r;
if (d1<d2) h2=l2+(h2-l2)/3*2;
else l2=l2+(h2-l2)/3;
}
dd2=d1;
if (dd1<dd2) h1=l1+(h1-l1)/3*2;
else l1=l1+(h1-l1)/3;
}
printf("%.2lf\n",dd1);
fclose(stdin);
fclose(stdout);
return 0;
}