SCOI2010——传送带(三分法)

1857: [Scoi2010]传送带

Time Limit: 1 Sec  Memory Limit: 64 MB
Submit: 449  Solved: 220
[Submit][Status][Discuss]
Description

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间
Input

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R
Output

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位
Sample Input
0 0 0 100
100 0 100 100
2 2 1

Sample Output
136.60

HINT
对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10
Source

Day2

解析:

        当在一条传送带外固定一个点时,从该点到传送带上的点的时间构成一个单峰函数。。。

        因此很容易想到三分。。。而且是三分套三分

        先在一条传送带上三分一个点,再以该点为基准,在另一条传送带上三分。。。

代码:

/**************************************************************
    Problem: 1857
    User: jianing
    Language: C++
    Result: Accepted
    Time:40 ms
    Memory:804 kb
****************************************************************/
 
#include<stdio.h>
#include<math.h>
 
double dis(double x1,double y1,double x2,double y2)
{
    return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
 
int main()
{
    double xa,xb,xc,xd;
    double ya,yb,yc,yd;
    double p,q,r;
    double x1,y1,x2,y2;
    double x3,y3,x4,y4;
    double l1,h1,l2,h2;
    double d1,d2,dd1,dd2;
    freopen("walk.in","r",stdin);
    freopen("walk.out","w",stdout);
    scanf("%lf%lf%lf%lf",&xa,&ya,&xb,&yb);
    scanf("%lf%lf%lf%lf",&xc,&yc,&xd,&yd);
    scanf("%lf%lf%lf",&p,&q,&r);
    l1=0;
    h1=1;
    while (h1-l1>1e-6)
    {
        x1=xa+(l1+(h1-l1)/3)*(xb-xa);
        y1=ya+(l1+(h1-l1)/3)*(yb-ya);
        l2=0;
        h2=1;
        while (h2-l2>1e-6)
        {
            x3=xc+(l2+(h2-l2)/3)*(xd-xc);
            y3=yc+(l2+(h2-l2)/3)*(yd-yc);
            x4=xc+(l2+(h2-l2)/3*2)*(xd-xc);
            y4=yc+(l2+(h2-l2)/3*2)*(yd-yc);
            d1=dis(x1,y1,xa,ya)/p+dis(x3,y3,xd,yd)/q+dis(x1,y1,x3,y3)/r;
            d2=dis(x1,y1,xa,ya)/p+dis(x4,y4,xd,yd)/q+dis(x1,y1,x4,y4)/r;
            if (d1<d2) h2=l2+(h2-l2)/3*2;
            else l2=l2+(h2-l2)/3;
        }
        dd1=d1;
        x2=xa+(l1+(h1-l1)/3*2)*(xb-xa);
        y2=ya+(l1+(h1-l1)/3*2)*(yb-ya);
        l2=0;
        h2=1;
        while (h2-l2>1e-6)
        {
            x3=xc+(l2+(h2-l2)/3)*(xd-xc);
            y3=yc+(l2+(h2-l2)/3)*(yd-yc);
            x4=xc+(l2+(h2-l2)/3*2)*(xd-xc);
            y4=yc+(l2+(h2-l2)/3*2)*(yd-yc);
            d1=dis(x2,y2,xa,ya)/p+dis(x3,y3,xd,yd)/q+dis(x2,y2,x3,y3)/r;
            d2=dis(x2,y2,xa,ya)/p+dis(x4,y4,xd,yd)/q+dis(x2,y2,x4,y4)/r;
            if (d1<d2) h2=l2+(h2-l2)/3*2;
            else l2=l2+(h2-l2)/3;
        }
        dd2=d1;
        if (dd1<dd2) h1=l1+(h1-l1)/3*2;
        else l1=l1+(h1-l1)/3;
    }
    printf("%.2lf\n",dd1);
    fclose(stdin);
    fclose(stdout);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值