Description
给出一个有n层的靶形正方形,每一层的代价相同(>0),只能往上下左右走,求从左上角走到右下角的代价最小,下图为n=5的情况:
Solution
想一下,有一个结论:线路一定是先走到某层的左上角,绕一圈后,再以与之前相反的路走,到右下角(对称),
所以,我们只要求出从左上角出发,计算到每层的左上角的代价即可,
因为每一层一定要走,所以尽量在小的地方多走,用一个前缀和加前缀最大值即可。
复杂度: O(n)
Code
#include <iostream>
#include <cstdio>
#include <cstdlib>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fod(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long LL;
const int N=100500;
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;n=q*w;return n;
}
int n,t;
LL ans,sum[N],f[N];
LL a[N],b[N];
int main()
{
LL q;
read(n);n++;
fod(i,n,1)a[i]=read(t);
fo(i,1,n)sum[i]=sum[i-1]+(LL)a[i],b[i]=i;
fo(i,2,n)if(a[b[i]]>a[b[i-1]])b[i]=b[i-1];
ans=1e15;
fo(i,1,n)q=b[i-1],ans=min(ans,(f[i]=sum[i]-sum[q]+(i-q)*a[q]+f[q])*2+(LL)a[i]*((2*n-1-2*i)*2+1));
printf("%lld\n", ans);
return 0;
}