【51NOD 1622】【51NOD 算法马拉松19】集合对

Description

定义集合xor操作 A xor B=A∪B-A∩B。
问有多少对(P,Q)满足 P∈A Q∈B 使得 (P xor A)xor(Q xor B)=A xor B其中P Q都是集合。
答案对1e9+7取模。

例如:A ={1} ,B={1,2},A xor B = {2},枚举所有情况P Q有2种。

Solution

我们把两个集合想象成0,1的二进制状态,
首先这两个数值不存在某一位同时为0,(否则无意义)
我们发现,当两位分别为0,1时,只有1种方案(P∈A,Q∈B),
当两位都为1是,有两种方案,
所以 ans=2|AB|
复杂度: O(log(|AB|))

Code

#include <cstdio>
using namespace std;
typedef long long LL;
const int mo=1e9+7;
LL q,n,ans;
LL ksm(LL q,LL w){return w?(ksm(q*q%mo,w>>1)*(w%2?q:1)%mo):1;}
int main()
{
    scanf("%lld%lld%lld",&q,&q,&n);
    printf("%lld\n",ksm(2,n));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值