高精度数连续加n次1所产生的进位次数总和

有时候遇上一些神奇的题目,要求要把一个高精度数连续加n次1,这个时候复杂度就比较的难算,

结论

一个高精度数连续加n次1,总的进位次数一定不超过n次;
加上每次+1的复杂度,
总的复杂度不超过 O(2n)

证明

我们假设这个高精度数是2进制的,并且原数为0,
那么,第一位每2次产生一次进位,
第i位每 2i 次产生一次进位,
所以,总的进位次数为:

i=1n2i

=ni=112i

n

又因为在其他更大的进制下,这个数会更小,
所以总的复杂度绝对不超过 O(2n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值