有时候遇上一些神奇的题目,要求要把一个高精度数连续加n次1,这个时候复杂度就比较的难算,
结论
一个高精度数连续加n次1,总的进位次数一定不超过n次;
加上每次+1的复杂度,
总的复杂度不超过
O(2n)
证明
我们假设这个高精度数是2进制的,并且原数为0,
那么,第一位每2次产生一次进位,
第i位每
2i
次产生一次进位,
所以,总的进位次数为:
∑i=1∞n2i
=n∗∑i=1∞12i
≈n
又因为在其他更大的进制下,这个数会更小,
所以总的复杂度绝对不超过 O(2n)