常用损失函数及Tensorflow代码实现

本文介绍了损失函数在神经网络训练中的作用,详细讲解了均方误差(mse)、自定义损失函数以及交叉熵(Cross Entropy)的概念,并提供了TensorFlow的实现代码。通过对预测值与真实值的差距进行量化,损失函数帮助优化模型以提高预测准确性。自定义损失函数可根据具体问题调整,而交叉熵衡量了两个概率分布的相似度。
摘要由CSDN通过智能技术生成

损失函数(loss):用来表示预测值(y)与已知答案(y_)的差距。在训练神经网络时,通过不断 改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。

常用的损失函数有均方误差、自定义和交叉熵等。 

1.均方误差 mse

n 个样本的预测值 y 与已知答案 y_之差的平方和,再求平均值。

                                                      

在 Tensorflow 中用 loss_mse = tf.reduce_mean(tf.square(y_ - y))

2.自定义损失函数

根据问题的实际情况,定制合理的损失函数。

例如:

对于预测酸奶日销量问题,如果预测销量大于实际销量则会损失成本;如果预测销量小于实际销量则 会损失利润。在实际生活中,往往制造一盒酸奶的成本和销售一盒酸奶的利润是不等价的。因此,需 要使用符合该问题的自定义损失函数。

TensorFlow中,损失函数是用来衡量模型预测结果与真实标签之间的差异或误差的一种函数。常用损失函数有交叉熵损失函数和均方误差损失函数。交叉熵损失函数主要用于分类问题,而均方误差损失函数主要用于回归问题。 在引用中的代码中,使用的是交叉熵损失函数(cross entropy)。交叉熵是一种常用的衡量两个概率分布之间差异的指标。在该代码中,先通过tf.log()函数计算input_data的对数,并通过tf.clip_by_value()函数将其限制在一个较小的范围内,以避免计算log时出现无穷大的情况。然后将labels与input_data相乘,再取其平均值,最后将其取负号,得到交叉熵的结果。 在引用中的代码中,使用的是均方误差损失函数(mean square error, MSE)。均方误差是指预测值与真实值之间差异的平方的平均值。在该代码中,通过tf.square()计算a与b的差的平方,然后再取平均值,得到均方误差的结果。 需要注意的是,损失函数的选择要根据具体的问题和模型来决定,不同的问题可能需要不同的损失函数来进行优化和训练。以上只是介绍了交叉熵和均方误差这两种常用损失函数。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Tensorflow深度学习实战之(九)--损失函数](https://blog.csdn.net/tore007/article/details/126270812)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值