损失函数(loss):用来表示预测值(y)与已知答案(y_)的差距。在训练神经网络时,通过不断 改变神经网络中所有参数,使损失函数不断减小,从而训练出更高准确率的神经网络模型。
常用的损失函数有均方误差、自定义和交叉熵等。
1.均方误差 mse
n 个样本的预测值 y 与已知答案 y_之差的平方和,再求平均值。
在 Tensorflow 中用 loss_mse = tf.reduce_mean(tf.square(y_ - y))
2.自定义损失函数
根据问题的实际情况,定制合理的损失函数。
例如:
对于预测酸奶日销量问题,如果预测销量大于实际销量则会损失成本;如果预测销量小于实际销量则 会损失利润。在实际生活中,往往制造一盒酸奶的成本和销售一盒酸奶的利润是不等价的。因此,需 要使用符合该问题的自定义损失函数。