Python神经网络入门(1)构建网络

使用Python复现ANN网络时,第一步需要构建网络:

对于每层,我们通过权重函数与偏置来产生输出值,并进行前向传播至输出层。

代码如下:

import numpy as np

#定义权重函数
def create_weight(n_input,n_neuron):
    _weight_matrix = np.random.randn(n_input,n_neuron)

#定义偏置函数    
def biases(n_neuron):
    _b_ = np.random.randn(1,n_neuron)

#定义激活函数       
def activation_ReLU(inputs):
    return np.maximum(0,inputs)

#定义层
class Layer:
    def __init__(self,n_input,n_neuron):
        self.weight = np.random.randn(n_input,n_neuron)
        self.biases = np.random.randn(1,n_neuron)
        
    def layer_Forward(self,inputs):
        sum = np.dot(inputs, self.weight)+self.biases
        self.output = activation_ReLU(sum)
        return self.output

#定义网络
class Network:
    def __init__(self,network_shape):
        self.shape = network_shape
        self.layers = []
        for i in range(len(self.shape)-1):
            layer = Layer(self.shape[i],self.shape[i+1])
            self.layers.append(layer)
            
    def network_forward(self,inputs):
        self.output = []
        for i in range(len(self.shape)-1):
            output = self.layers[i].layer_Forward(inputs)
            self.output.append(output)
            inputs = output
        return output

其中,通过”输出=权重*输入+偏置“来计算每层输出值,通过网络形状调用层前推函数对输出值进行自动计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值