使用Python复现ANN网络时,第一步需要构建网络:
对于每层,我们通过权重函数与偏置来产生输出值,并进行前向传播至输出层。
代码如下:
import numpy as np
#定义权重函数
def create_weight(n_input,n_neuron):
_weight_matrix = np.random.randn(n_input,n_neuron)
#定义偏置函数
def biases(n_neuron):
_b_ = np.random.randn(1,n_neuron)
#定义激活函数
def activation_ReLU(inputs):
return np.maximum(0,inputs)
#定义层
class Layer:
def __init__(self,n_input,n_neuron):
self.weight = np.random.randn(n_input,n_neuron)
self.biases = np.random.randn(1,n_neuron)
def layer_Forward(self,inputs):
sum = np.dot(inputs, self.weight)+self.biases
self.output = activation_ReLU(sum)
return self.output
#定义网络
class Network:
def __init__(self,network_shape):
self.shape = network_shape
self.layers = []
for i in range(len(self.shape)-1):
layer = Layer(self.shape[i],self.shape[i+1])
self.layers.append(layer)
def network_forward(self,inputs):
self.output = []
for i in range(len(self.shape)-1):
output = self.layers[i].layer_Forward(inputs)
self.output.append(output)
inputs = output
return output
其中,通过”输出=权重*输入+偏置“来计算每层输出值,通过网络形状调用层前推函数对输出值进行自动计算