以下转自 《算法竞赛进阶指南》
这是一道数学期望与动态规划结合的题目
设 f [ a , b , c , d , x , y ] f[a,b,c,d,x,y] f[a,b,c,d,x,y] 表示已经翻开 a a a 张黑桃, b b b 张红桃, c c c 张梅花, d d d 张方块,小王状态为 x x x,大王状态为 y y y 的期望值,黑桃为 0 0 0,红桃为 1 1 1,梅花为 2 2 2,方块为 3 3 3; x = 4 x=4 x=4 表示没有用过小王,否则为小王对应的花色
当前已经用过的牌数可以轻松算出,即 s u m = ( a + b + c + d + ( x ≠ 4 ) + ( y ≠ 4 ) ) sum=(a+b+c+d+(x \ne 4)+(y \ne 4)) sum=(a+b+c+d+(x̸=4)+(y̸=4)),则目前剩下 54 − s u m 54-sum 54−sum 张牌,其中有 13 − a 13-a 13−a 张黑桃,故翻出一张黑桃的概率为 13 − a 54 − s u m \frac{13-a}{54-sum} 54−sum13−a,翻出一张黑桃后,其他的期望为 d p [ a + 1 , b , c , d , x , y ] dp[a+1,b,c,d,x,y] dp[a+1,b,c,d,x,y]
对于大小王,情况比较特殊,当 x = 4 x=4 x=4 时,有 1 54 − s u m \frac{1}{54-sum} 54−sum1 的概率翻出小王,根据题意,赢吧小王看做某种花色,使得期望值最小,即 min 0 < x ′ < 3 { f [ a , b , c , d , x ′ , y ] } \min_{0<x'<3}\{f[a,b,c,d,x',y]\} min0<x′<3{f[a,b,c,d,x′,y]},大王情况类似
边界:
- 如果已经翻开的牌数达到题目要求的数量,那么期望值为 0 0 0
- 若 54 张牌被翻完未达到,则 54 − s u m ≤ 0 54-sum \le 0 54−sum≤0,期望值正无穷
答案: f [ 0 , 0 , 0 , 0 , 4 , 4 ] f[0,0,0,0,4,4] f[0,0,0,0,4,4]
#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(s) freopen(s".in", "r", stdin), freopen(s."out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 15 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }
double f[N][N][N][N][5][5], ans ;
bool v[N][N][N][N][5][5] ;
int C, D, H, S, t, T ;
double dp(int a, int b, int c, int d, int p, int q) {
if (v[a][b][c][d][p][q]) return f[a][b][c][d][p][q] ;
v[a][b][c][d][p][q] = 1 ;
double & ans = f[a][b][c][d][p][q] ;
ans = 0 ;
int x = a, y = b, z = c, w = d ;
if (p == 1) x++ ;
if (p == 2) y++ ;
if (p == 3) z++ ;
if (p == 4) w++ ;
if (q == 1) x++ ;
if (q == 2) y++ ;
if (q == 3) z++ ;
if (q == 4) w++ ;
if (x >= C && y >= D && z >= H && w >= S) return 0 ;
int cnt = 54 - x - y - z - w ;
if (cnt <= 0) return ans = 1e10 ;
if (a < 13) ans += dp(a + 1, b, c, d, p, q) * (13 - a) / cnt ;
if (b < 13) ans += dp(a, b + 1, c, d, p, q) * (13 - b) / cnt ;
if (c < 13) ans += dp(a, b, c + 1, d, p, q) * (13 - c) / cnt ;
if (d < 13) ans += dp(a, b, c, d + 1, p, q) * (13 - d) / cnt ;
if (!p) {
double temp = dp(a, b, c, d, 1, q) ;
temp = min(temp, dp(a, b, c, d, 2, q)) ;
temp = min(temp, dp(a, b, c, d, 3, q)) ;
temp = min(temp, dp(a, b, c, d, 4, q)) ;
ans += temp / cnt ;
}
if (!q) {
double temp = dp(a, b, c, d, p, 1) ;
temp = min(temp, dp(a, b, c, d, p, 2)) ;
temp = min(temp, dp(a, b, c, d, p, 3)) ;
temp = min(temp, dp(a, b, c, d, p, 4)) ;
ans += temp / cnt ;
}
return ++ans ;
}
int main() {
cin >> C >> D >> H >> S ;
ans = dp(0, 0, 0, 0, 0, 0) ;
if (ans > 100) puts("-1.000") ;
else printf("%.3f\n", ans) ;
return 0 ;
}
/*
写代码时请注意:
1.ll?数组大小,边界?数据范围?
2.精度?
3.特判?
4.至少做一些
思考提醒:
1.最大值最小->二分?
2.可以贪心么?不行dp可以么
3.可以优化么
4.维护区间用什么数据结构?
5.统计方案是用dp?模了么?
6.逆向思维?
*/