0x38 扑克牌 (期望dp)

这道问题探讨了在扑克牌游戏中结合数学期望和动态规划的策略。通过定义f[a,b,c,d,x,y]来表示不同花色翻开的牌数和王的状态时的期望值。翻牌的概率和策略涉及到小王和大王的特殊处理,以及如何选择让期望值最小化。最终目标是计算f[0,0,0,0,4,4]的期望值。" 89496206,5691934,Android 使用Git提交与管理代码,"['Git', 'Android开发', '版本控制', '代码管理']
摘要由CSDN通过智能技术生成

以下转自 《算法竞赛进阶指南》

这是一道数学期望与动态规划结合的题目

f [ a , b , c , d , x , y ] f[a,b,c,d,x,y] f[a,b,c,d,x,y] 表示已经翻开 a a a 张黑桃, b b b 张红桃, c c c 张梅花, d d d 张方块,小王状态为 x x x,大王状态为 y y y 的期望值,黑桃为 0 0 0,红桃为 1 1 1,梅花为 2 2 2,方块为 3 3 3 x = 4 x=4 x=4 表示没有用过小王,否则为小王对应的花色

当前已经用过的牌数可以轻松算出,即 s u m = ( a + b + c + d + ( x ≠ 4 ) + ( y ≠ 4 ) ) sum=(a+b+c+d+(x \ne 4)+(y \ne 4)) sum=(a+b+c+d+(x̸=4)+(y̸=4)),则目前剩下 54 − s u m 54-sum 54sum 张牌,其中有 13 − a 13-a 13a 张黑桃,故翻出一张黑桃的概率为 13 − a 54 − s u m \frac{13-a}{54-sum} 54sum13a,翻出一张黑桃后,其他的期望为 d p [ a + 1 , b , c , d , x , y ] dp[a+1,b,c,d,x,y] dp[a+1,b,c,d,x,y]

对于大小王,情况比较特殊,当 x = 4 x=4 x=4 时,有 1 54 − s u m \frac{1}{54-sum} 54sum1 的概率翻出小王,根据题意,赢吧小王看做某种花色,使得期望值最小,即 min ⁡ 0 &lt; x ′ &lt; 3 { f [ a , b , c , d , x ′ , y ] } \min_{0&lt;x&#x27;&lt;3}\{f[a,b,c,d,x&#x27;,y]\} min0<x<3{f[a,b,c,d,x,y]},大王情况类似

边界:

  • 如果已经翻开的牌数达到题目要求的数量,那么期望值为 0 0 0
  • 若 54 张牌被翻完未达到,则 54 − s u m ≤ 0 54-sum \le 0 54sum0,期望值正无穷

答案: f [ 0 , 0 , 0 , 0 , 4 , 4 ] f[0,0,0,0,4,4] f[0,0,0,0,4,4]

#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
#define rep(i, a, b) for (int i = (a); i <= (b); i++)
#define per(i, a, b) for (int i = (a); i >= (b); i--)
#define loop(s, v, it) for (s::iterator it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (int i = head[x]; i; i = e[i].nxt)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, sum) memset(a, sum, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define iv inline void
#define enter cout << endl
#define siz(x) ((int)x.size())
#define file(s) freopen(s".in", "r", stdin), freopen(s."out", "w", stdout)
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int N = 15 ;
const int INF = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int MOD = 1000000007 ;
const double eps = 1e-7 ;
void print(int x) { cout << x << endl ; exit(0) ; }
void PRINT(string x) { cout << x << endl ; exit(0) ; }
void douout(double x){ printf("%lf\n", x + 0.0000000001) ; }



double f[N][N][N][N][5][5], ans ;
bool v[N][N][N][N][5][5] ;
int C, D, H, S, t, T ;

double dp(int a, int b, int c, int d, int p, int q) {
    if (v[a][b][c][d][p][q]) return f[a][b][c][d][p][q] ;
    v[a][b][c][d][p][q] = 1 ;
    double & ans = f[a][b][c][d][p][q] ;
    ans = 0 ;
    int x = a, y = b, z = c, w = d ;
    if (p == 1) x++ ;
    if (p == 2) y++ ;
    if (p == 3) z++ ;
    if (p == 4) w++ ;
    if (q == 1) x++ ;
    if (q == 2) y++ ;
    if (q == 3) z++ ;
    if (q == 4) w++ ;
    if (x >= C && y >= D && z >= H && w >= S) return 0 ;
    int cnt = 54 - x - y - z - w ;
    if (cnt <= 0) return ans = 1e10 ;
    if (a < 13) ans += dp(a + 1, b, c, d, p, q) * (13 - a) / cnt ;
    if (b < 13) ans += dp(a, b + 1, c, d, p, q) * (13 - b) / cnt ;
    if (c < 13) ans += dp(a, b, c + 1, d, p, q) * (13 - c) / cnt ;
    if (d < 13) ans += dp(a, b, c, d + 1, p, q) * (13 - d) / cnt ;
    if (!p) {
        double temp = dp(a, b, c, d, 1, q) ;
        temp = min(temp, dp(a, b, c, d, 2, q)) ;
        temp = min(temp, dp(a, b, c, d, 3, q)) ;
        temp = min(temp, dp(a, b, c, d, 4, q)) ;
        ans += temp / cnt ;
    }
    if (!q) {
        double temp = dp(a, b, c, d, p, 1) ;
        temp = min(temp, dp(a, b, c, d, p, 2)) ;
        temp = min(temp, dp(a, b, c, d, p, 3)) ;
        temp = min(temp, dp(a, b, c, d, p, 4)) ;
        ans += temp / cnt ;
    }
    return ++ans ;
}

int main() {
    cin >> C >> D >> H >> S ;
    ans = dp(0, 0, 0, 0, 0, 0) ;
    if (ans > 100) puts("-1.000") ;
    else printf("%.3f\n", ans) ;
    return 0 ;
}
/*
写代码时请注意:
	1.ll?数组大小,边界?数据范围?
	2.精度?
	3.特判?
	4.至少做一些
思考提醒:
	1.最大值最小->二分?
	2.可以贪心么?不行dp可以么
	3.可以优化么
	4.维护区间用什么数据结构?
	5.统计方案是用dp?模了么?
	6.逆向思维?
*/


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值