微分器相关研究(二)近似改进微分器和Simulink仿真

在上一节中我们进行经典微分器的简单研究,这一节中我们引入状态空间的分析方法

对于经典微分器的传递函数和状态空间表示方法如下,其思路在于利用白噪声期望为0的特点,经过惯性环节较长时间的信号积累,噪声的平均值接近0,从而避免了单步微分计算对噪声的放大 。

 

在状态空间的基础上进行离散化,h是积分步长,即采样步长,可以得到

最终的微分信号输出可以表达成下式,当输入x中包含噪声的时候,观察可以得到,此时对噪声的放大系数为\frac{1}{\tau } ,仅与微分器参数有关,与采样频率无关 

分别采用100Hz,1000Hz,10000Hz采样频率进行微分器输出仿真,由于采样点数量增加,白噪声的包络更加明显,但是噪声放大系数基本不变。  

 

为了减弱噪声放大效应,在原先的基础上采用近似改进的微分器

从传递函数上看,当\tau _{1}=0时,该表达式将为一阶与经典微分器一致,当\tau _{1}\neq 0时,即可看作由两个惯性环节组成的微分器,上述我们讲到,采用惯性环节的一个意义在于近似对噪声求积分。经典积分单元直接采用当前响应和惯性环节的输出,当前响应本身带了瞬时的噪声影响,为了消除这部分影响,采用两个不同时间常数的惯性环节,进一步降低白噪声的瞬时影响。 需要注意的是,这里的分析主要针对有效信号是慢时变信号的情况,如果有效信号本身类似于白噪声,则效果大概率不佳。

转换成状态空间,并进行离散化

最终的微分信号输出可以表达成下式,当输入x中包含噪声的时候,此时对噪声的放大系数为\frac{h}{\tau_{1} \tau_{2}} ,噪声放大效果与采样频率成反比,与时间常数成正比。 这里就有一个比较好的性质,为了降低系统时延,通常我们需要提高系统的采样频率,经典离散微分方式,随着采样频率升高,噪声的微分放大效果变大,采用该微分器,噪声的微分放大反而能够减小。由于是慢时变有效信号,h即采样步长通常比时间常数 \tau _{1}\tau _{2}小得多,故当 \tau _{1}\tau _{2}\tau的量级近似的情况下,改进微分器的噪声抑制效果同样更好

在近似参数的情况下,分别采用100Hz,1000Hz,10000Hz采样频率进行微分器输出仿真

进一步的,我们考虑当当 \tau _{1}\tau _{2}很接近\tau的时候,此时,该微分器就可以表示成

r=\frac{1}{\tau },则有

采用状态空间表示为

离散化后表示为 

由此进一步的我们可以推测,高阶微分器的表达式为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值