在上一节中我们进行经典微分器的简单研究,这一节中我们引入状态空间的分析方法
对于经典微分器的传递函数和状态空间表示方法如下,其思路在于利用白噪声期望为0的特点,经过惯性环节较长时间的信号积累,噪声的平均值接近0,从而避免了单步微分计算对噪声的放大 。
在状态空间的基础上进行离散化,h是积分步长,即采样步长,可以得到
最终的微分信号输出可以表达成下式,当输入x中包含噪声的时候,观察可以得到,此时对噪声的放大系数为 ,仅与微分器参数有关,与采样频率无关
分别采用100Hz,1000Hz,10000Hz采样频率进行微分器输出仿真,由于采样点数量增加,白噪声的包络更加明显,但是噪声放大系数基本不变。
为了减弱噪声放大效应,在原先的基础上采用近似改进的微分器
从传递函数上看,当时,该表达式将为一阶与经典微分器一致,当
时,即可看作由两个惯性环节组成的微分器,上述我们讲到,采用惯性环节的一个意义在于近似对噪声求积分。经典积分单元直接采用当前响应和惯性环节的输出,当前响应本身带了瞬时的噪声影响,为了消除这部分影响,采用两个不同时间常数的惯性环节,进一步降低白噪声的瞬时影响。 需要注意的是,这里的分析主要针对有效信号是慢时变信号的情况,如果有效信号本身类似于白噪声,则效果大概率不佳。
转换成状态空间,并进行离散化
最终的微分信号输出可以表达成下式,当输入x中包含噪声的时候,此时对噪声的放大系数为 ,噪声放大效果与采样频率成反比,与时间常数成正比。 这里就有一个比较好的性质,为了降低系统时延,通常我们需要提高系统的采样频率,经典离散微分方式,随着采样频率升高,噪声的微分放大效果变大,采用该微分器,噪声的微分放大反而能够减小。由于是慢时变有效信号,h即采样步长通常比时间常数
、
小得多,故当
、
和
的量级近似的情况下,改进微分器的噪声抑制效果同样更好
在近似参数的情况下,分别采用100Hz,1000Hz,10000Hz采样频率进行微分器输出仿真
进一步的,我们考虑当当 、
很接近
的时候,此时,该微分器就可以表示成
记,则有
采用状态空间表示为
离散化后表示为
由此进一步的我们可以推测,高阶微分器的表达式为: